Power Query & Power Pivot in Excel

Table of Contents:
· Introduction
· Thinking Like a Database
· Introducing Power Pivot
· The Pivotal Pivot Table
· Using External Data with Power Pivot
· Working Directly with the Internal Data Model
· Adding Formulas to Power Pivot
· Diving into DAX
· Introducing Power Query
· Power Query Connection Types
· Transforming Your Way to Better Data
· Making Queries Work Together
· Extending Power Query with Custom Functions
· Ten Ways to Improve Power Pivot Performance
· Ten Tips for Working with Power Query


[bookmark: _Ref127768934]Introduction
[bookmark: _Hlk127705426]Over the past few years, the concept of self-service business intelligence (BI) has taken over the corporate world. Self-service BI is a form of business intelligence in which end users can independently generate their own reports, run their own queries, and conduct their own analyses, without the need to engage the IT department.
The demand for self-service BI is a direct result of several factors:
· More power users: Organizations are realizing that no single enterprise reporting system or BI tool can accommodate all their users. Predefined reports and high-level dashboards may be sufficient for casual users, but a large portion of today’s users are savvy enough to be considered power users. Power users have a greater understanding of data analysis and prefer to perform their own analysis, often within Excel.
· Changing analytical needs: In the past, business intelligence primarily consisted of IT-managed dashboards showing historic data on an agreed-upon set of key performance metrics. Managers now demand more dynamic predictive analysis, the ability to perform data discovery iteratively, and the freedom to take the hard left and right turns on data presentation. These managers often turn to Excel to provide the needed analytics and visualization tools.
· Speed of BI: Users are increasingly dissatisfied with the inability of IT to quickly deliver new reporting and metrics. Most traditional BI implementations fail specifically because the need for changes and answers to new questions overwhelmingly outpaces the IT department’s ability to deliver them. As a result, users often find ways to work around the perceived IT bottleneck and ultimately build their own shadow BI (under the radar) solutions in Excel.
Recognizing the importance of the self-service BI revolution and the role Excel plays in it, Microsoft has made substantial investments in making Excel a player in the self-service BI arena by embedding both Power Pivot and Power Query directly into Excel.
You can integrate multiple data sources, define relationships between data sources, process analysis services cubes, and develop interactive dashboards that can be shared on the web. Indeed, the new Microsoft BI tools blur the line between Excel analysis and what is traditionally IT enterprise-level data management and reporting capabilities.
With these new tools in the Excel wheelhouse, it’s becoming important for business analysts to expand their skill sets to new territory, including database management, query design, data integration, multidimensional reporting, and a host of other skills. Excel analysts must expand their skill set knowledge base from the one-dimensional spreadsheets to relational databases, data integration, and multidimensional reporting.
That’s where this course comes in. Here, you’re introduced to the mysterious world of Power Pivot and Power Query. You find out how to leverage the rich set of tools and reporting capabilities to save time, automate data clean-up, and substantially enhance your data analysis and reporting capabilities.
[bookmark: _Ref127768939]

Thinking Like a Database
With the introduction of business intelligence (BI) tools such as Power Pivot and Power Query, it’s becoming increasingly important for Excel analysts to understand core database principles. Unlike traditional Excel concepts, where the approach to developing solutions is relatively intuitive, you need to have a basic understanding of database terminology and architecture to get the most benefit from Power Pivot and Power Query. This module introduces you to a handful of fundamental concepts that you should know before taking on the rest of this course.
Exploring the Limits of Excel and How Databases Help
Years of consulting experience have brought this humble author face to face with managers, accountants, and analysts who all have had to accept this simple fact: Their analytical needs had outgrown Excel. They all faced fundamental challenges that stemmed from one or more of Excel’s three problem areas: scalability, transparency of analytical processes, and separation of data and presentation.
Scalability
Scalability is the ability of an application to develop flexibly to meet growth and complexity requirements. In the context of this module, scalability refers to Excel’s ability to handle ever-increasing volumes of data.
Imagine that you’re working in a small company and using Excel to analyse its daily transactions. As time goes on, you build a robust process complete with all the formulas, pivot tables, and macros you need to analyse the data that is stored in your neatly maintained worksheet.
As the amount of data grows, you will first notice performance issues. The spreadsheet will become slow to load and then slow to calculate. Why does this happen? It has to do with the way Excel handles memory. When an Excel file is loaded, the entire file is loaded into RAM. Excel does this to allow for quick data processing and access. The drawback to this behaviour is that every time the data in your spreadsheet changes, Excel must reload the entire document into RAM. The net result in a large spreadsheet is that it takes a great deal of RAM to process even the smallest change. Eventually, every action you take in the gigantic worksheet is preceded by an excruciating wait.
Your pivot tables will require bigger pivot caches, almost doubling the Excel workbook’s file size. Eventually, the workbook will become too big to distribute easily. You may even consider breaking down the workbook into smaller workbooks (possibly one for each region). This causes you to duplicate your work.
In time, you may eventually reach the 1,048,576-row limit of the worksheet. What happens then? Do you start a new worksheet? How do you analyse two datasets on two different worksheets as one entity? Are your formulas still good? Will you have to write new macros?
These are all issues that need to be addressed.
Of course, you will also encounter the Excel power customers, who will find various clever ways to work around these limitations. In the end, though, these methods will always be simply workarounds. Eventually, even these power customers will begin to think less about the most effective way to perform and present analysis of their data and more about how to make data “fit” into Excel without breaking their formulas and functions. Excel is flexible enough that a proficient customer can make most things fit just fine. However, when customers think only in terms of Excel, they’re undoubtedly limiting themselves, albeit in an incredibly functional way.
In addition, these capacity limitations often force Excel customers to have the data prepared for them. That is, someone else extracts large chunks of data from a large database and then aggregates and shapes the data for use in Excel. Should the serious analyst always be dependent on someone else for their data needs? What if an analyst could be given the tools to access vast quantities of data without being reliant on others to provide data? Could that analyst be more valuable to the organization? Could that analyst focus on the accuracy of the analysis and the quality of the presentation instead of routine Excel data maintenance?
A relational database system (such as Access or SQL Server) is a logical next step for the analyst who faces an ever-increasing data pool. Database systems don’t usually have performance implications with large amounts of stored data and are built to address large volumes of data. An analyst can then handle larger datasets without requiring the data to be summarized or prepared to fit into Excel. Also, if a process ever becomes more crucial to the organization and needs to be tracked in a more enterprise-acceptable environment, it will be easier to upgrade and scale up if that process is already in a relational database system.
Transparency of analytical processes
One of Excel’s most attractive features is its flexibility. Each individual cell can contain text, a number, a formula, or practically anything else the customer defines. Indeed, this is one of the fundamental reasons that Excel is an effective tool for data analysis. Customers can use named ranges, formulas, and macros to create an intricate system of interlocking calculations, linked cells, and formatted summaries that work together to create a final analysis.
So, what is the problem? The problem is that there is no transparency of analytical processes. It is extremely difficult to determine what is going on in a spreadsheet. Anyone who has had to work with a spreadsheet created by someone else knows all too well the frustration that comes with deciphering the various gyrations of calculations and links being used to perform analysis. Small spreadsheets that are performing modest analysis are painful to decipher, and large, elaborate, multi-worksheet workbooks are virtually impossible to decode, often leaving you to start from scratch.
Compared to Excel, database systems might seem rigid, strict, and unwavering in their rules. However, all this rigidity comes with a benefit.
Because only certain actions are allowable, you can more easily come to understand what is being done within structured database objects such as queries or stored procedures. If a dataset is being edited, a number is being calculated, or any portion of the dataset is being affected as part of an analytical process, you can readily see that action by reviewing the query syntax or the stored procedure code. Indeed, in a relational database system, you never encounter hidden formulas, hidden cells, or dead named ranges.
Separation of data and presentation
Data should be separate from presentation; you don’t want the data to become too tied into any way of presenting it. For example, when you receive an invoice from a company, you don’t assume that the financial data on that invoice is the true source of your data. It is a presentation of your data. It can be presented to you in other manners and styles on charts or on websites, but such representations are never the actual source of the data.
What exactly does this concept have to do with Excel? People who perform data analysis with Excel tend, often, to fuse the data, the analysis, and the presentation. For example, you often see an Excel workbook that has 12 worksheets, each representing a month. On each worksheet, data for that month is listed along with formulas, pivot tables, and summaries. What happens when you’re asked to provide a summary by quarter? Do you add more formulas and worksheets to consolidate the data on each of the month worksheets? The fundamental problem in this scenario is that the worksheets represent data values that are fused into the presentation of the analysis.
The point being made here is that data should not be tied to a particular presentation, no matter how apparently logical or useful it may be. However, in Excel, it happens all the time.
In addition, as discussed earlier in this module, because all manners and phases of analysis can be done directly within a spreadsheet, Excel cannot effectively provide adequate transparency to the analysis. Each cell has the potential to hold formulas, be hidden, and contain links to other cells. In Excel, this blurs the line between analysis and data, which makes it difficult to determine exactly what is going on in a spreadsheet. Moreover, it takes a great deal of effort in the way of manual maintenance to ensure that edits and unforeseen changes don’t affect previous analyses.
Relational database systems inherently separate analytical components into tables, queries, and reports. By separating these elements, databases make data less sensitive to changes and create a data analysis environment in which you can easily respond to new requests for analysis without destroying previous analyses.
You may find that you manipulate Excel’s functionalities to approximate this database behaviour. If so, you must consider that if you’re using Excel’s functionality to make it behave like a database application, perhaps the real thing just might have something to offer. Utilizing databases for data storage and analytical needs would enhance overall data analysis and would allow Excel power customers to focus on the presentation in their spreadsheets.
In these days of big data, customers demand more, not less, complex data analysis. Excel analysts will need to add tools to their repertoires to avoid being simply “spreadsheet mechanics.” Excel can be stretched to do just about anything, but maintaining such creative solutions can be a tedious manual task. You can be sure that the sexy aspect of data analysis does not lie in the routine data management within Excel; rather, it lies in leveraging BI Tools such as providing clients with the best solution for any situation.
Getting to Know Database Terminology
The terms database, table, record, field, and value indicate a hierarchy from largest to smallest. These same terms are used with virtually all database systems, so you should learn them well.
Databases
Generally, the word database is a computer term for a collection of information concerning a certain topic or business application. A database helps you organize this related information in a logical fashion for easy access and retrieval. Certain older database systems used the term database to describe individual tables. The current use of database applies to all elements of a database system.
Databases aren’t only for computers. Manual databases are sometimes referred to as manual filing systems or manual database systems. These filing systems usually consist of people, papers, folders, and filing cabinets — paper is the key to a manual database system. In a real-life manual database system, you probably have in-baskets and out-baskets and some type of formal filing method. You access information manually by opening a file cabinet, removing a file folder, and finding the correct piece of paper. Customers fill out paper forms for input, perhaps by using a keyboard to input information that is printed on forms. You find information by manually sorting the papers or by copying information from many papers to another piece of paper (or even into an Excel spreadsheet). You may use a spreadsheet or calculator to analyse the data or display it in new and interesting ways.
Tables
A database stores information in a carefully defined structure known as a table. A table is just a container for raw information (called data), like a folder in a manual filing system. Each table in a database contains information about a single entity, such as a person or product, and the data in the table is organized into rows and columns. A relational database system stores data in related tables. For example, a table containing employee data (names and addresses) may be related to a table containing payroll information (pay date, pay amount, and check number).
To use database wording, a table is an object. As you design and work with databases, it’s important to see each table as a unique entity and to see how each table relates to the other objects in the database. 
In most database systems, you can view the contents of a table in a spreadsheet like form called a datasheet, composed of rows and columns (known as records and fields, respectively — see the following section). Although a datasheet and a spreadsheet are superficially similar, a datasheet is quite a different type of object. You typically cannot make changes or add calculations directly within a table. Your interaction with tables will primarily come in the form of queries or views — see the later section “Queries”.
Records, fields, and values
A database table is divided into rows (called records) and columns (called fields), with the first row (the heading on top of each column) containing the names of the fields in the database.
Each row is a single record containing fields that are related to that record. In a manual system, the rows are individual forms (sheets of paper), and the fields are equivalent to the blank areas on a printed form that you fill in.
Each column is a field that includes many properties specifying the type of data contained within the field and how the database should handle the field’s data. These properties include the name of the field (Company) and the type of data in the field (Text). A field may include other properties as well. For example, the Address field’s Size property tells the database the maximum number of characters allowed for the address.
At the intersection of a record and a field is a value — the actual data element. For example, in a field named Company, a company name entered that field would represent one data value.
Remember:
When working with Microsoft Access, the term field is used to refer to an attribute stored in a record. In many other database systems, including SQL Server, column is the expression you hear most often in place of field — field and column mean the same thing. The exact terminology that’s used relies somewhat on the context of the database system underlying the table containing the record.


Queries
Most relational database systems allow the creation of queries (sometimes called views). A query extracts information from the tables in the database; a query selects and defines a group of records that fulfil a certain condition. Most database outputs are based on queries that combine, filter, or sort data before it’s displayed. Queries are often called from other database objects, such as stored procedures, macros, or code modules. In addition to extracting data from tables, queries can be used to change, add, or delete database records.
An example of a query is when a person at the sales office tells the database, “Show me all customers, in alphabetical order by name, who are located in Massachusetts and who made a purchase over the past six months.” Or “Show me all customers who bought Chevrolet car models within the past six months and display them sorted by customer name and then by sale date.”
Rather than ask the question using English words, a person uses a special syntax, such as Structured Query Language (or SQL), to communicate to the database what the query will need to do.
Understanding Relationships
After you understand the basic terminology of databases, it’s time to focus on one of their more useful features: A relationship is the mechanism by which separate tables are related to each other. You can think of a relationship as a kind of VLOOKUP, in which you relate the data in one data range to the data in another data range using an index or a unique identifier. In databases, relationships do the same thing, but without the hassle of writing formulas.
Relationships are important because most of the data you work with fits into a multidimensional hierarchy of sorts. For example, you may have a table showing customers who buy products. These customers require invoices that have invoice numbers. Those invoices have multiple lines of transactions listing what they bought. A hierarchy exists there.
Now, in the one-dimensional spreadsheet world, this data typically would be stored in a flat table, like the one shown in Figure 1-1.
Because customers have more than one invoice, the customer information (in this example, CustomerID and CustomerName) must be repeated. This causes a problem when that data needs to be updated.
[image: ]
FIGURE 1-1: Data is stored in an Excel spreadsheet using a flat-table format.
For example, imagine that the name of the company Aaron Fitz Electrical changes to Fitz and Sons Electrical. Looking at Figure 1-1, you see that multiple rows contain the old name. You would have to ensure that every row containing the old company name is updated to reflect the change. Any rows you miss will not correctly map back to the right customer.
Wouldn’t it be more logical and efficient to record the name and information of the customer only one time? Then, rather than must write the same customer information repeatedly, you could simply have some form of customer reference number.
This is the idea behind relationships. You can separate customers from invoices, placing each in their own tables. Then you can use a unique identifier (such as CustomerID) to relate them together.
Figure 1-2 illustrates how this data would look in a relational database. The data would be split into three separate tables: Customers, InvoiceHeader, and Invoice-Details. Each table would then be related using unique identifiers (CustomerID and InvoiceNumber, in this case).
[image: ]
FIGURE 1-2: Databases use relationships to store data in unique tables and simply relate these tables to each other.
The Customers table would contain a unique record for each customer. That way, if you need to change a customer’s name, you will need to make the change in only that record. Of course, in real life, the Customers table would include other attributes, such as customer address, customer phone number, and customer start date. Any of these other attributes could also be easily stored and managed in the Customers table.
The most common relationship type is a one-to-many relationship. That is, for each record in one table, one record can be matched to many records in a separate table. For example, an invoice header table is related to an invoice detail table. The invoice header table has a unique identifier: Invoice Number. The invoice detail will use the Invoice Number for every record representing a detail of that invoice.
Another kind of relationship type is the one-to-one relationship: For each record in one table, one and only one matching record is in a different table. Data from different tables in a one-to-one relationship can technically be combined into a single table.
Finally, in a many-to-many relationship, records in both tables can have any number of matching records in the other table. For instance, a database at a bank may have a table of the various types of loans (home loan, car loan, and so on) and a table of customers. A customer can have many types of loans. Meanwhile, each type of loan can be granted to many customers.
If your head is spinning from all this database talk, don’t worry. You don’t need to be an expert database modeler to use Power Pivot. But it’s important to understand these concepts. The better you understand how data is stored and managed in databases, the more effectively you’ll leverage Power Pivot for reporting.
[bookmark: _Ref127768948]Introducing Power Pivot
Over the past decade or so, corporate managers, eager to turn impossible amounts of data into useful information, drove the business intelligence (BI) industry to innovate new ways of synthesizing data into meaningful insights. During this period, organizations spent lots of time and money implementing big enterprise reporting systems to help keep up with the hunger for data analytics and dashboards.
Recognizing the importance of the BI revolution and the place that Excel holds within it, Microsoft proceeded to make substantial investments in improving Excel’s BI capabilities. It specifically focused on Excel’s self-service BI capabilities and its ability to better manage and analyse information from the increasing number of available data sources.
The key product of that endeavour was essentially Power Pivot (introduced in Excel 2010 as an add-in). With Power Pivot came the ability to set up relationships between large, disparate data sources. For the first time, Excel analysts were able to add a relational view to their reporting without the use of problematic functions such as VLOOKUPS. The ability to merge data sources with hundreds of thousands of rows into one analytical engine within Excel was ground-breaking.
With the release of Excel 2016, Microsoft incorporated Power Pivot directly into Excel. The powerful capabilities of Power Pivot are available out of the box! In this module, you get an overview of those capabilities by exploring the key features, benefits, and capabilities of Power Pivot.
Understanding the Power Pivot Internal Data Model
At its core, Power Pivot is essentially a SQL Server Analysis Services engine made available by way of an in-memory process that runs directly within Excel. Its technical name is the xVelocity analytics engine. However, in Excel, it’s referred to as the Internal Data Model.
Every Excel workbook contains an Internal Data Model, a single instance of the Power Pivot in-memory engine. The most effective way to interact with the Internal Data Model is to use the Power Pivot Ribbon interface (see Figure 2-1).
[image: ]
FIGURE 2-1: The Power Pivot Ribbon interface.
The Power Pivot Ribbon interface exposes the full set of functionalities you don’t get with the standard Excel Data tab. Here are a few examples of functionality available with the Power Pivot interface:
· You can browse, edit, filter, and apply custom sorting to data.
· You can create custom calculated columns that apply to all rows in the data import.
· You can define a default number format to use when the field appears in a pivot table.
· You can easily configure relationships via the handy Graphical Diagram view.
· You can choose to prevent certain fields from appearing in the PivotTable Field List.
As with everything else in Excel, the Internal Data Model does have limitations. Most Excel users will not likely hit these limitations, because Power Pivot’s compression algorithm is typically able to shrink imported data to about one-tenth its original size. For example, a 100MB text file would take up only approximately 10MB in the Internal Data Model.
Nevertheless, it’s important to understand the maximum and configurable limits for Power Pivot Data Models. Table 2-1 highlights them.
WHERE’S THE POWER PIVOT TAB?
Organizations often install Excel in accordance with their own installation policies. In some organizations, Excel is installed without the PowerPivot add-in activated, so the Power Pivot tab won’t be visible. If you don’t see the Power Pivot tab shown in Figure 2-1, you can follow these steps to activate it:
1. Go up to the Excel Ribbon and choose File ➪ Options.
2. Select the Add-Ins option on the left.
3. From the Manage drop-down list, select COM Add-Ins and click Go.
4. In the list of available COM Add-Ins, check the box next to Microsoft Office Power Pivot for Excel and click OK.
5. If the Power Pivot tab doesn’t appear on the Ribbon, quit and restart Excel.
	Table 2-1: Limitations of the Internal Data Model

	Object
	Specification

	Data model size
	In 32-bit environments, Excel workbooks are subject to a 2GB limit. This includes the in-memory space shared by Excel, the Internal Data Model, and add-ins that run in the same process.
In 64-bit environments, there are no hard limits on file size. Workbook size is limited only by available memory and system resources.

	Number of tables in the data
model
	No hard limits exist on the count of tables. However, all tables in the data model cannot exceed 2,147,483,647 bytes.

	Number of rows in each table in the data model
	1,999,999,997

	Number of columns and calculated columns in each table in the data model
	The number cannot exceed 2,147,483,647 bytes.

	Number of distinct values in a column
	1,999,999,997

	Characters in a column name
	100 characters

	String length in each field
	It’s limited to 536,870,912 bytes (512MB), equivalent to 268,435,456 Unicode characters (256 mega-characters).



A WORD ON COMPATIBILITY
Since Excel 2010 was released, Microsoft has made several versions of Power Pivot available. Different versions of Power Pivot are being used, depending on the version of Excel. Be careful when sharing Power Pivot workbooks in environments where some of your audience is using earlier versions of Excel while others are using more recent versions of Excel. Opening and refreshing a workbook that contains a Power Pivot model created with an older version of the Power Pivot add-in will trigger an automatic upgrade of the underlying model. When this happens, users with older versions of Excel will no longer be able to use the Power Pivot model in the workbook.
Power Pivot workbooks created in a version of Excel that is older than your version should give you no problems. However, you won’t be able use Power Pivot workbooks created in a version of Excel newer than your version.


Linking Excel Tables to Power Pivot
The first step in using Power Pivot is to fill it with data. You can either import data from external data sources or link to Excel tables in your current workbook. I cover importing data from external data sources in Module 4. For now, let me start this walkthrough by showing you how to link three Excel tables to Power Pivot.
Exercise Files: Module 2 Samples.xlsx.
In this scenario, you have three data sets in three different worksheets: Customers, InvoiceHeader, and InvoiceDetails (see Figure 2-2).
The Customers data set contains basic information, such as CustomerID, Customer Name, and Address. The InvoiceHeader data set contains data that points specific invoices to specific customers. The InvoiceDetails data set contains the specifics of each invoice.
To analyse revenue by customer and month, it’s clear that you first need to somehow join these three tables together. In the past, you would have to go through a series of gyrations involving VLOOKUP or other clever formulas. But with Power Pivot, you can build these relationships in just a few clicks.
[image: ]
FIGURE 2-2: You want to use Power Pivot to analyse the data in the Customers, InvoiceHeader, and InvoiceDetails worksheets.
Preparing Excel tables
When linking Excel data to Power Pivot, best practice is to first convert the Excel data to explicitly named tables. Although not technically necessary, giving tables friendly names helps track and manage your data in the Power Pivot data model. If you don’t convert your data to tables first, Excel does it for you and gives your tables useless names like Table1, Table2, and so on. 
Follow these steps to convert each data set into an Excel table:
1. Go to the Customers tab and click anywhere inside the data range.
2. Press Ctrl+T on the keyboard.
This step opens the Create Table dialog box, shown in Figure 2-3
[image: ]
FIGURE 2-3: Convert the data range into an Excel table.
3. In the Create Table dialog box, ensure that the range for the table is correct and that the My Table Has Headers check box is selected. Click the OK button.
You should now see the Table Design Tab on the Ribbon
4. Click the Table Design tab and use the Table Name input to give your table a friendly name, as shown in Figure 2-4.
[image: ]
FIGURE 2-4: Give your newly created Excel table a friendly name.
This step ensures that you can recognize the table when adding it to the Internal Data Model.
5. Repeat Steps 1 through 4 for the Invoice Header and Invoice Details data sets.
Adding Excel Tables to the data model
After you convert your data to Excel tables, you’re ready to add them to the Power Pivot data model. Follow these steps to add the newly created Excel tables to the data model using the Power Pivot tab:
1. Place the cursor anywhere inside the Customers Excel table.
2. Go to the Power Pivot tab on the Ribbon and click the Add to Data Model command.
Power Pivot creates a copy of the table and opens the Power Pivot window, shown in Figure 2-5.
[image: ]
FIGURE 2-5: The Power Pivot window shows all the data that exists in your data model.
Although the Power Pivot window looks like Excel, it’s a separate program altogether. Notice that the grid for the Customers table offers row numbers but no column references. Also notice that you cannot edit the data within the table. This data is simply a snapshot of the Excel table you imported.
Additionally, if you look at the Windows taskbar at the bottom of the screen, you can see that Power Pivot has a separate window from Excel. You can switch between Excel and the Power Pivot window by clicking each respective program on the taskbar.
TIP
If your Windows taskbar combines taskbar buttons, the Power Pivot button may be hidden with the Excel group of buttons. Click or mouse over the Excel icon on the taskbar to reach the Power Pivot button.
Repeat Steps 1 and 2 in the preceding list for your other Excel tables: Invoice-Header, InvoiceDetails. After you’ve imported all your Excel tables into the data model, the Power Pivot window will show each data set on its own tab, as shown in Figure 2-6.
[image: ]
FIGURE 2-6: Each table you add to the data model is placed on its own tab in Power Pivot.

REMEMBER
Because the data you just imported into Power Pivot comes from an Excel table within the current workbook, Power Pivot will consider these linked tables. So, even though the data shown in Power Pivot is a snapshot at the time you added it, the data automatically updates when you edit the source table in Excel. Linked tables are the only kind of data source that automatically refreshes as the data within changes.
Creating relationships between Power Pivot tables
At this point, Power Pivot knows that you have three tables in the data model but has no idea how the tables relate to one another. You connect these tables by defining relationships between the Customers, Invoice Details, and Invoice Header tables. You can do so directly within the Power Pivot window.
TIP
If you’ve inadvertently closed the Power Pivot window, you can easily reopen it by clicking the Manage command button on the Power Pivot Ribbon tab.
Follow these steps to create relationships between your tables:
1. Activate the Power Pivot window and click the Diagram View command button on the Home tab.
The Power Pivot screen you see shows a visual representation of all tables in the data model, as shown in Figure 2-7.
[image: ]
FIGURE 2-7: Diagram view allows you to see all tables in the data model.
TIP
You can move the tables in Diagram view by simply clicking and dragging them.

The idea is to identify the primary index keys in each table and connect them. In this scenario, the Customers table and the Invoice Header table can be connected using the CustomerID field. The Invoice Header and Invoice Details tables can be connected using the InvoiceNumber field.
2. Click and drag a line from the CustomerID field in the Customers table to the CustomerID field in the Invoice Header table, as demonstrated in Figure 2-8.
3. Click and drag a line from the InvoiceNumber field in the Invoice Header table to the InvoiceNumber field in the Invoice Details table.
[image: ]
FIGURE 2-8: To create a relationship, you simply click and drag a line between the fields in your tables.
At this point, your diagram will look like Figure 2-9. Notice that Power Pivot shows a line between the tables you just connected. In database terms, these are referred to as joins.
[image: ]
FIGURE 2-9: When you create relationships, the Power Pivot diagram shows join lines between tables.
The joins in Power Pivot are always one-to-many joins. This means that when a table is joined to another, one of the tables has unique records with unique index numbers (CustomerID for example), while the other can have many records where index numbers are duplicated.
Notice in Figure 2-9 that the join lines have arrows pointing from a table to another table. The arrows in these join lines will always point to the table that has the duplicated index. In this case, the Customers table contains a unique list of customers, each having its own unique identifier. No CustomerID in that table is duplicated. The Invoice header table has many rows for each CustomerID; each customer can have many invoices.
TIP
To close the diagram and return to seeing the data tables, click the Data View command in the Power Pivot window.
Managing existing relationships
If you need to edit or delete a relationship between two tables in your data model, you can do so by following these steps:
1. Open the Power Pivot window, select the Design tab, and then select the Manage Relationships command.
2. In the Manage Relationships dialog box, shown in Figure 2-10, click the relationship you want to work with and click Edit or Delete.
[image: ]
FIGURE 2-10: Use the Manage Relationships dialog box to edit or delete existing relationships.
If you click Edit, the Edit Relationship dialog box (shown in Figure 2-11) appears. The columns used to form the relationship are highlighted. Here, you can redefine the relationship by simply selecting the appropriate columns. You can also use the Active check box to disable or enable the relationship.
[image: ]
FIGURE 2-11: Use the Edit Relationship dialog box to adjust the tables and field names that define the selected relationship.
REMEMBER
In Figure 2-9, you see a graphic of an arrow between the list boxes. The graphic has an asterisk next to the list box on the left, and a number 1 next to the list box on the right. The number 1 basically indicates that the model will use the table listed on the right as the source for a unique primary key.

Every relationship must have a field that you designate as the primary key. Primary key fields are necessary in the data model to prevent aggregation errors and duplications. In that light, the Excel data model must impose some strict rules around the primary key.
You cannot have any duplicates or null values in a field being used as the primary key. So, the Customers table (refer to Figure 2-9) must have all unique values in the CustomerID field, with no blanks or null values. This is the only way that Excel can ensure data integrity when joining multiple tables.
At least one of your tables must contain a field that serves as a primary key — that is, a field that contains only unique values and no blanks.
Using the Power Pivot data model in reporting
After you define the relationships in your Power Pivot data model, it’s essentially ready for action. In terms of Power Pivot, action means analysis with a pivot table.
In fact, all Power Pivot data is presented through the framework of pivot tables. In Module 3, you dive deep into the workings of pivot tables. For now, dip just a toe in and create a simple pivot table from your new Power Pivot data model:
1. Activate the Power Pivot window, select the Home tab, and then click the Pivot Table command button.
2. Specify whether you want the pivot table placed on a new worksheet or an existing sheet.
3. Build out the needed analysis just as you would build out any other standard pivot table, using the Pivot Field List.
The pivot table shown in Figure 2-12 contains all tables in the Power Pivot data model. Unlike a standard pivot table, where you can use fields from only one table, the relationships defined the internal data model allow you to use any of the fields from any of the tables. With this configuration, you have a powerful cross-table analytical engine in the form of a familiar pivot table. Here, you can see that you’re calculating the average unit price by customer.
[image: ]
FIGURE 2-12: You now have a Power Pivot-driven pivot table that aggregates across multiple tables.
In the days before Power Pivot, this analysis would have been a bear to create. You would have had to build VLOOKUP formulas to get from Customer Number to Invoice Number, and then another set of VLOOKUP formulas to get from Invoice Numbers to Invoice Details. And after all that formula building, you still would have had to find a way to aggregate the data to the average unit price per customer.


[bookmark: _Ref127768952]The Pivotal Pivot Table
When creating Power Pivot data models, you will have to use some form of pivot table structure to expose the data in those models available to your audience.
Pivot tables have a reputation for being complicated, but if you’re new to pivot tables, rest easy. This module gives you the fundamental understanding you need to analyse and report on the data in your Power Pivot data model. After completing this introduction, you’ll be pleasantly surprised at how easy it is to create and use pivot tables.
Exercise File: Module 3 Samples.xlsx and Module 3 Slicers.xlsx
Introducing the Pivot Table
A pivot table is a robust tool that allows you to create an interactive view of your dataset, commonly referred to as a pivot table report. With a pivot table report, you can quickly and easily categorize your data into groups, summarize large amounts of data into meaningful analyses, and interactively perform a wide variety of calculations.
Pivot tables get their name from the way they allow you to drag and drop fields within the pivot table report to dynamically change (or pivot) perspective and give you an entirely new analysis using the same data source.
Think of a pivot table as an object you can point at your dataset. When you look at your dataset through a pivot table, you can see your data from different perspectives. The dataset itself doesn’t change, and it’s not connected to the pivot table. The pivot table is simply a tool you’re using to dynamically change analyses, apply varying calculations, and interactively drill down to the detail records.
The reason a pivot table is so well suited for reporting is that you can refresh the analyses shown through the pivot table by simply updating the dataset that it points to. You can set up the analysis and presentation layers only one time; then, to refresh the reporting mechanism, all you must do is click a button. 
Let’s start this exploration of pivot tables with a lesson on the anatomy of a pivot table.
Defining the Four Areas of a Pivot Table
A pivot table is composed of four areas. The data you place in these areas defines both the utility and appearance of the pivot table. Take a moment to understand the function of each of these four areas.
Values area
The values area, as shown in Figure 3-1, is the large, rectangular area below and to the right of the column and row headings. In the example in Figure 3-1, the values area contains a sum of the values in the Sales Amount field.
The values area calculates and counts data. The data fields that you drag and drop there are typically those that you want to measure — fields, such as Sum of Revenue, Count of Units, or Average of Price.
[image: ]
FIGURE 3-1: The values area of a pivot table calculates and counts data.
Row area
The row area is shown in Figure 3-2. Placing a data field into the row area displays the unique values from that field down the rows of the left side of the pivot table. The row area typically has at least one field, although it’s possible to have no fields.
[image: ]
FIGURE 3-2: The row area of a pivot table gives you a row-oriented perspective.
The types of data fields that you would drop here include those that you want to group and categorize, such as Products, Names, and Locations.
Column area
The column area is composed of headings that stretch across the top of columns in the pivot table.
As you can see in Figure 3-3, the column area stretches across the top of the columns. In this example, it contains the unique list of business segments.
[image: ]
FIGURE 3-3: The column area of a pivot table gives you a column-oriented perspective.
Placing a data field into the column area displays the unique values from that field in a column-oriented perspective. The column area is ideal for creating a data matrix or showing trends over time.
Filter area
The filter area is an optional set of one or more drop-down lists at the top of the pivot table. In Figure 3-4, the filter area contains the Region field, and the pivot table is set to show all regions.
[image: ]
FIGURE 3-4: The filter area allows you to easily apply filters to the pivot table report.
Placing data fields into the filter area allows you to filter the entire pivot table based on your selections. The types of data fields that you might drop here include those that you want to isolate and focus on, for example, Region, Line of Business, and Employees.
Creating Your First Pivot Table
Now that you have a good understanding of the basic structure of a pivot table, it’s time to try your hand at creating your first pivot table.
Follow these steps:
1. Click any single cell inside the data source; it’s the table you use to feed the pivot table.
If you’re following along, the data source would be the table found on the
Sample Data tab.
2. Select the Insert tab on the Ribbon and then click the PivotTable command (shown in Figure 3-5).
[image: ]
FIGURE 3-5: Start a pivot table via the Insert tab.
This step opens the Create PivotTable dialog box, as shown in Figure 3-6. As you can see, this dialog box asks you to specify the location of the source data and the place where you want to put the pivot table.
[image: ]
FIGURE 3-6: The Create PivotTable dialog box.
REMEMBER
Notice that in the Create PivotTable dialog box, Excel attempt to fill in the range of your data for you. In most cases, Excel gets this right. However, always make sure that the correct range is selected.
Also note in Figure 3-6 that the default location for a new pivot table is New Worksheet. This means your pivot table is placed in a new worksheet within the current workbook. You can change this by selecting the Existing Worksheet option and specifying the worksheet where you want the pivot table placed.
3. Click OK.
At this point, you have an empty pivot table report on a new worksheet. Next to the empty pivot table, you see the PivotTable Fields task pane, shown in Figure 3-7.
[image: ]
FIGURE 3-7: The PivotTable Fields task pane.
The idea here is to add the fields you need into the pivot table by using the four drop zones found in the PivotTable Field List: Filters, Columns, Rows, and Values. Pleasantly enough, these drop zones correspond to the four areas of the pivot table described at the beginning of this module.
TIP
If clicking the pivot table doesn’t open the PivotTable Fields dialog box, you can manually open it by right-clicking anywhere inside the pivot table and selecting Show Field List.
Now, before you go wild and start dropping fields into the various drop zones, you should ask yourself two questions: “What am I measuring?” and “How do I want to see it?” The answers to these questions give you some guidance when determining which fields go where.
For your first pivot table report, measure the dollar sales by market. This automatically tells you that you need to work with the Sales Amount field and the Market field.
How do you want to see that? You want markets to be listed down the left side of the report and the sales amount to be calculated next to each market. Remembering the four areas of the pivot table, you need to add the Market field to the Rows drop zone and add the Sales Amount field to the Values drop zone.
4. Select the Market check box in the list, as shown in Figure 3-8.
[image: ]
FIGURE 3-8: Select the Market check box.
Now that you have regions in the pivot table, it’s time to add the dollar sales.
5. Select the Sales Amount check box in the list, as shown in Figure 3-9.
[image: ]
FIGURE 3-9: Add the Sales Amount field by selecting its check box.
Selecting a check box that is non-numeric (text or date) automatically places that field into the row area of the pivot table. Selecting a check box that is numeric automatically places that field in the values area of the pivot table.
What happens if you need fields in the other areas of the pivot table? Well, rather than select the field’s check box, you can drag any field directly to the different drop zones.
One more thing: When you add fields to the drop zones, you may find it difficult to see all the fields in each drop zone. You can expand the PivotTable Fields dialog box by clicking and dragging the borders of the dialog box.
As you can see, you have just analysed the sales for each market in just five steps! That’s an amazing feat, considering that you start with more than 60,000 rows of data. With a little formatting, this modest pivot table can become the starting point for a management report.
Changing and rearranging a pivot table
Now, here’s the wonderful thing about pivot tables: You can add as many layers of analysis as made possible by the fields in the source data table. Say that you want to show the dollar sales that each market earned by business segment. Because the pivot table already contains the Market and Sales Amount fields, all you must add is the Business Segment field.
So, simply click anywhere on the pivot table to reopen the PivotTable Fields task pane, and then select the Business Segment check box. Figure 3-10 illustrates what the pivot table should look like now.
[image: ]
FIGURE 3-10: Adding a layer of analysis is as easy as bringing in another field.
TIP
If clicking the pivot table doesn’t open the PivotTable Fields task pane, you can manually open it by right-clicking anywhere inside the pivot table and selecting Show Field List.
Imagine that your manager says that this layout doesn’t work for them. They want to see business segments displayed across the top of the pivot table report. No problem: Simply drag the Business Segment field from the Rows drop zone to the Columns drop zone. As you can see in Figure 3-11, this instantly restructures the pivot table to your manager’s specifications.
[image: ]
FIGURE 3-11: Your business segments are now column oriented.
Adding a report filter
Often, you’re asked to produce reports for one region, market, or product. Rather than work hours building separate reports for every possible analysis scenario, you can leverage pivot tables to help create multiple views of the same data. For example, you can do so by creating a region filter in the pivot table.
Click anywhere on the pivot table to reopen the PivotTable Fields task pane and then drag the Region field to the Filters drop zone. This adds a drop-down selector to the pivot table, shown in Figure 3-12 (cell B1). You can then use this selector to analyse one region at a time.
[image: ]
FIGURE 3-12: Adding Region to the Filters drop zone displays a Region drop-down list.
Keeping the pivot table fresh
In Hollywood, it’s important to stay fresh and relevant. As boring as the pivot tables may seem, they’ll eventually become the stars of your reports. So, it’s just as important to keep your pivot tables fresh and relevant.
As time goes by, your data may change and grow with newly added rows and columns. The action of updating your pivot table with these changes is refreshing your data.
The pivot table report can be refreshed by simply right-clicking inside the pivot table report and selecting Refresh, as shown in Figure 3-13.
[image: ]
FIGURE 3-13: Refreshing the pivot table captures changes made to your data.
Sometimes, you’re the data source that feeds your pivot table changes in structure. For example, you may have added or deleted rows or columns from the data table. These types of changes affect the range of the data source, not just a few data items in the table.
In these cases, performing a simple Refresh of the pivot table won’t do. You must update the range being captured by the pivot table. Here’s how:
1. Click anywhere inside the pivot table to select the PivotTable Analyse context tab on the Ribbon.
2. Click Change Data Source, as shown in Figure 3-14.
[image: ]
FIGURE 3-14: Changing the range that feeds the pivot table.
The Change PivotTable Data Source dialog box appears.
3. Change the range selection to include any new rows or columns (see Figure 3-15).
[image: ]
FIGURE 3-15: Select the new range that feeds the pivot table.
4. Click OK to apply the change.
Customizing Pivot Table Reports
The pivot tables you create often need to be tweaked to get the look and feel you’re looking for. In this section, I cover some of the options you can adjust to customize your pivot tables to suit your reporting needs.
Changing the pivot table layout
Excel gives you a choice in the layout of the data in a pivot table. The three layouts, shown side by side in Figure 3-16, are the Compact Form, Outline Form, and Tabular Form. Although no layout stands out as better than the others, I prefer using the Tabular Form layout because it seems easiest to read and it’s the layout that most people who have seen pivot tables are used to.
[image: ]
FIGURE 3-16: The three layouts for a pivot table report.
The layout you choose affects not only the look and feel of your reporting mechanisms but also, possibly, the way you build and interact with any reporting models based on your pivot tables.
Changing the layout of a pivot table is easy. Follow these steps:
1. Click anywhere inside the pivot table to select the Design context tab on the Ribbon.
2. Click the Report Layout icon and choose the layout you like (see Figure 3-17).
[image: ]
FIGURE 3-17: Changing the layout of the pivot table.
Customizing field names
Notice that every field in the pivot table has a name. The fields in the row, column, and filter areas inherit their names from the data labels in the source table. The fields in the values area are given a name, such as Sum of Sales Amount.
Sometimes you might prefer the name Total Sales instead of the unattractive default name, such as Sum of Sales Amount. In these situations, the ability to change your field names is handy. To change a field name, follow these steps:
1. Right-click any value within the target field.
For example, if you want to change the name of the field Sum of Sales Amount, right-click the field name, or any value under that field
2. Select Value Field Settings, as shown in Figure 3-18.
[image: ]
FIGURE 3-18: Right-click the target field to select the Value Field Settings option.
The Value Field Settings dialog box appears.
3. Enter the new name in the Custom Name input box, shown in Figure 3-19.
[image: ]
FIGURE 3-19: Use the Custom Name input box to change the name of the field.
4. Click OK to apply the change.
TIP
If you use the name of the data label used in the source table, you receive an error. For example, if you rename Sum of Sales Amount as Sales Amount, you see an error message because there’s already a Sales Amount field in the source data table. Well, this is kind of lame, especially if Sales Amount is exactly what you want to name the field in your pivot table.
To get around this, you can name the field and add a space to the end of the name. Excel considers Sales Amount (followed by a space) to be different from Sales Amount. This way, you can use the name you want, and no one will notice that it’s any different.
Applying numeric formats to data fields
Numbers in pivot tables can be formatted to fit your needs; that is, formatted as currency, percentage, or number. You can easily control the numeric formatting of a field using the Value Field Settings dialog box. Here’s how:
1. Right-click the target field’s name or any value within the target field.
For example, if you want to change the format of the values in the Sales Amount field, right-click the field name or any value under that field.
2. Select Value Field Settings.
The Value Field Settings dialog box appears.
3. Click the Number Format button.
The Format Cells dialog box opens.
4. Apply the number format you desire, just as you typically would on your spreadsheet.
5. Click OK to apply the changes.
After you set the formatting for a field, the applied formatting persists, even if you refresh or rearrange the pivot table.
Changing summary calculations
When creating the pivot table report, Excel, by default, summarizes your data by either counting or summing the items. Rather than choose Sum or Count, you might want to choose functions, such as Average, Min, Max, for example. In all, 11 options are available, including
	Sum
	Adds all numeric data.

	Count
	Counts all data items within a given field, including numeric-, text-, and date-formatted cells.

	Average
	Calculates an average for the target data items.

	Max
	Displays the largest value in the target data items.

	Min
	Displays the smallest value in the target data items.

	Product
	Multiplies all target data items together.

	Count Numbers
	Counts only the numeric cells in the target data items.

	StdDevP 
	Calculates the standard deviation for the target data items. Use StdDevP if your dataset contains the complete population. Use StdDev if your dataset contains a sample of the population.

	StdDev
	

	VarP 
	Calculates the statistical variance for the target data items. Use
VarP if your data contains a complete population. If your data contains only a sampling of the complete population, use Var to estimate the variance.

	Var
	





You can easily change the summary calculation for any given field by taking the following actions:
1. Right-click any value within the target field.
2. Select Value Field Settings.
The Value Field Settings dialog box appears.
3. Choose the type of calculation you want to use from the list of calculations (see Figure 3-20).
[image: ]
FIGURE 3-20: Changing the type of summary calculation used in a field.
4. Click OK to apply the changes.
REMEMBER
Did you know that a single blank cell causes Excel to count instead of sum? That’s right: If all cells in a column contain numeric data, Excel chooses Sum. If only one cell is either blank or contains text, Excel chooses Count.
Be sure to pay attention to the fields that you place into the values area of the pivot table. If the field name starts with Count Of, Excel is counting the items in the field instead of summing the values.
Suppressing subtotals
Notice that every time you add a field to the pivot table, Excel adds a subtotal for that field. At times, however, the inclusion of subtotals either doesn’t make sense or simply hinders a clear view of the pivot table report. For example, Figure 3-21 shows a pivot table in which the subtotals inundate the report with totals that hide the real data you’re trying to report.
[image: ]
FIGURE 3-21: Subtotals sometimes muddle the data you’re trying to show.
Removing all subtotals at one time
You can remove all subtotals at one time by taking these actions:
1. Click anywhere inside the pivot table to select the Design context tab on the Ribbon.
2. Click the Subtotals icon and select Do Not Show Subtotals, as shown in Figure 3-22.
[image: ]
FIGURE 3-22: Use the Do Not Show Subtotals option to remove all subtotals at one time.
As you can see in Figure 3-23, the same report without subtotals is much more pleasant to review.
[image: ]
FIGURE 3-23: The report shown in Figure 3-21, without subtotals.
Removing the subtotals for only one field
Maybe you want to remove the subtotals for only one field? In such a case, you can take the following actions:
1. Right-click any value within the target field.
2. Select Field Settings.
The Field Settings dialog box appears.
3. Choose the None option under Subtotals, as shown in Figure 3-24.
4. Click OK to apply the changes.
Removing grand totals
In certain instances, you may want to remove the grand totals from the pivot table. Follow these steps:
1. Right-click anywhere on the pivot table.
2. Select PivotTable Options.
The PivotTable Options dialog box appears.
[image: ]
FIGURE 3-24: Choose the None option to remove subtotals for one field.
3. Click the Totals & Filters tab.
4. Click the Show Grand Totals for Rows check box to deselect it.
5. Click the Show Grand Totals for Columns check box to deselect it.
6. Click OK to apply your changes.
Showing and hiding data items
A pivot table summarizes and displays all records in a source data table. In certain situations, however, you may want to inhibit certain data items from being included in the pivot table summary. In these situations, you can choose to hide a data item.
In terms of pivot tables, hiding doesn’t mean simply preventing the data item from being shown on the report. Hiding a data item also prevents it from being factored into the summary calculations.
In the pivot table illustrated in Figure 3-25, I show sales amounts for all business segments by market. In this example, I want to show totals without taking sales from the Bikes segment into consideration. In other words, I want to hide the Bikes segment.
[image: ]
FIGURE 3-25: To remove Bikes from this analysis . . .
You can hide the Bikes Business Segment by clicking the Business Segment dropdown arrow and deselecting the Bikes check box, as shown in Figure 3-26.
[image: ]
FIGURE 3-26: . . . deselect the Bikes check box.
After you click OK to close the selection box, the pivot table instantly recalculates, leaving out the Bikes segment. As you can see in Figure 3-27, the Market total sales now reflect the sales without Bikes.
[image: ]
FIGURE 3-27: The analysis from Figure 3-25, without the Bikes segment.
You can just as quickly reinstate all hidden data items for the field. You simply click the Business Segment drop-down arrow and click the Select All check box, as shown in Figure 3-28.
[image: ]
FIGURE 3-28: Clicking the Select All check box forces all data items in that field to become unhidden.
Hiding or showing items without data
By default, the pivot table shows only data items that have data. This inherent behaviour may cause unintended problems for your data analysis.
Look at Figure 3-29, which shows a pivot table with the SalesPeriod field in the row area and the Region field in the filter area. Note that the Region field is set to (All) and that every sales period appears in the report.
[image: ]
FIGURE 3-29: All sales periods are showing.
If you choose Europe in the filter area, only a portion of all the sales periods is shown (see Figure 3-30). The pivot table shows only those sales periods that apply to the Europe region.
[image: ]
FIGURE 3-30: Filtering for the Europe region causes certain sales periods to disappear.
From a reporting perspective, it isn’t ideal if half the year’s data disappears every time customers select Europe.
Here’s how you can prevent Excel from hiding pivot items without data:
1. Right-click any value within the target field.
In this example, the target field is the SalesPeriod field.
2. Select Field Settings.
The Field Settings dialog box appears.
3. Select the Layout & Print tab in the Field Settings dialog box.
4. Select the Show Items with No Data option, as shown in Figure 3-31.
[image: ] 
FIGURE 3-31: Select the Show Items with No Data option to force Excel to display all data items.
5. Click OK to apply the change.
As you can see in Figure 3-32, after you choose the Show Items with No Data option, all sales periods appear whether the selected region had sales that period or not.
[image: ]
FIGURE 3-32: All sales periods are now displayed, even if there is no data to be shown.
Now that you’re confident that the structure of the pivot table is locked, you can use it to feed charts and other components on your report.
Sorting the pivot table
By default, items in each pivot field are sorted in ascending sequence based on the item name. Excel gives you the freedom to change the sort order of the items in the pivot table.
Like many actions you can perform in Excel, you have lots of different ways to sort data within a pivot table. The easiest way is to apply the sort directly in the pivot table. Here’s how:
1. Right-click any value within the target field — the field you need to sort.
In the example shown in Figure 3-33, you want to sort by Sales Amount.
[image: ]
FIGURE 3-33: Applying a sort to a pivot table field.
2. Select Sort and then select the sort direction.
The changes take effect immediately and persist while you work with the pivot
table.


Understanding Slicers
Slicers allow you to filter your pivot table in a way that’s like the way Filter fields filter a pivot table. The difference is that slicers offer a user-friendly interface, enabling you to better manage the filter state of your pivot table reports.
As useful as Filter fields are, they have always had a couple of drawbacks.
First, Filter fields are not cascading filters — the filters don’t work together to limit selections when needed. For example, in Figure 3-34, you can see that the Region filter is set to the North America region. However, the Market filter still allows you to select markets that are clearly not in the North America region (Germany, for example). Because the Market filter is not in any way limited based on the Region Filter field, you have the annoying possibility of selecting a market that could yield no data because it’s not in the North America region.
[image: ] 
[image: ]FIGURE 3-34: Default pivot table Filter fields do not work together to limit filter selections.
Another drawback is that Filter fields don’t provide an easy way to tell what exactly is being filtered when you select multiple items. In Figure 3-35, you can see an example. The Market filter has been limited to four markets. However, notice that the Market filter value shows (Multiple Items). By default, Filter fields show (Multiple Items) when you select more than one item. The only way to tell what has been selected is to click the drop-down menu. You can imagine the confusion on a printed version of this report, in which you can’t click down to see which data items make up the numbers on the page.





FIGURE 3-35: Filter fields show the phrase (Multiple Items) whenever multiple selections are made.
By contrast, slicers don’t have these issues. Slicers respond to one another. As you can see in Figure 3-36, the Market slicer visibly highlights the relevant markets when the North America region is selected. The rest of the markets are muted, signalling that they are not part of the selected region.
[image: ]
FIGURE 3-36: Slicers work together to show you relevant data items based on your selection.
When selecting multiple items in a slicer, you can easily see that multiple items have been chosen. In Figure 3-37, you can see that the pivot table is being filtered by the Northeast and Southwest markets.
[image: ]
FIGURE 3-37: Slicers do a better job at displaying multiple item selections.
Creating a Standard Slicer
Enough talk. It’s time to create your first slicer. Just follow these steps:
1. Place the cursor anywhere inside the pivot table, and then go up to the Ribbon and click the PivotTable Analyse tab. There, click the Insert Slicer icon, shown in Figure 3-38.
[image: ]
FIGURE 3-38: Inserting a slicer.
This step opens the Insert Slicers dialog box, shown in Figure 3-39. Select the fields you want to filter. In this example, the Region and Market slicers are created.
[image: ] FIGURE 3-39: Select the fields for which you want slicers created.
2. After the slicers are created, simply click the filter values to filter the pivot table.
As you can see in Figure 3-40, clicking Midwest in the Region slicer not only filters the pivot table, but the Market slicer also responds by highlighting the markets that belong to the Midwest region.
[image: ]
FIGURE 3-40: Select the fields you want filtered using slicers.
You can also select multiple values by holding down the Ctrl key on the keyboard while selecting the needed filters. In Figure 3-41, I held down the Ctrl key while selecting Baltimore, California, Charlotte, and Chicago. This highlights not only the selected markets in the Market slicer but also their associated regions in the Region slicer.
[image: ]
FIGURE 3-41: The fact that you can see the current filter state gives slicers a unique advantage over Filter fields.
To clear the filtering on a slicer, simply click the Clear Filter icon on the target slicer, as shown in Figure 3-42.
[image: ] FIGURE 3-42: Clearing the filters on a slicer.
Getting Fancy with Slicer Customizations
The following sections cover a few formatting adjustments you can make to your slicers.
Size and placement
A slicer behaves like a standard Excel shape object in that you can move it around and adjust its size by clicking it and dragging its position points (see Figure 3-43).
[image: ] 
FIGURE 3-43: Adjust the slicer size and placement by dragging its position points.
[image: ]You can also right-click the slicer and select Size and Properties. This brings up the Format Slicer pane (see Figure 3-44), allowing you to adjust the size of the slicer, how the slicer should behave when cells are shifted, and whether the slicer should appear on a printed copy of your report.










FIGURE 3-44: The Format Slicer pane offers more control over how the slicer behaves in relation to the worksheet it’s on.
Data item columns
By default, all slicers are created with one column of data items. You can change this number by right clicking the slicer and selecting Size and Properties. This opens the Format Slicer pane. Under the Position and Layout section, you can specify the number of columns in the slicer. Adjusting the number to 2, as shown in Figure 3-45, forces the data items to be displayed in two columns, adjusting the number to 3 forces the data items to be displayed in three columns, and so on.
[image: ]
FIGURE 3-45: Adjust the Number of Columns property to display the slicer data items in more than one column.
Miscellaneous slicer settings
Right clicking the slicer and selecting Slicer Settings opens the Slicer Settings dialog box, shown in Figure 3-46. Using this dialog box, you can control the look of the slicer’s header, how the slicer is sorted, and how filtered items are handled.
[image: ]
FIGURE 3-46: The Slicer Settings dialog box.
Controlling Multiple Pivot Tables with One Slicer
Another advantage you gain with slicers is that each slicer can be tied to more than one pivot table; that is to say, any filter you apply to your slicer can be applied to multiple pivot tables.
To connect the slicer to more than one pivot table, simply right-click the slicer and select Report Connections. This opens the Report Connections dialog box, shown in Figure 3-47. Place a check mark next to any pivot table that you want to filter using the current slicer.
[image: ] FIGURE 3-47: Choose the pivot tables to be filtered by this slicer.
At this point, any filter you apply to the slicer is applied to all connected pivot tables. Controlling the filter state of multiple pivot tables is a powerful feature, especially in reports that run on multiple pivot tables.
Creating a Timeline Slicer
The Timeline slicer works in the same way a standard slicer does, in that it lets you filter a pivot table using a visual selection mechanism rather than the old Filter fields. The difference is that the Timeline slicer is designed to work exclusively with date fields, providing an excellent visual method to filter and group the dates in the pivot table.
To create a Timeline slicer, the pivot table must contain a field where all data is formatted as a date. It’s not enough to have a column of data that contains a few dates. All values in the date field must be a valid date and formatted as such.
To create a Timeline slicer, follow these steps:
1. Place the cursor anywhere inside the pivot table, and then click the PivotTable Analyse tab on the Ribbon. There, click the Insert Timeline command.
The Insert Timelines dialog box, shown in Figure 3-48, appears, showing you all available date fields in the chosen pivot table.
[image: ] FIGURE 3-48: Select the date fields for which you want slicers created.
2. In the Insert Timelines dialog box, select the date fields for which you want to create the timeline.
After the Timeline slicer is created, you can filter the data in the pivot table and pivot chart, using this dynamic data-selection mechanism. Figure 3-49 demonstrates how selecting Mar, Apr, and May in the Timeline slicer automatically filters the pivot chart.
[image: ] 
FIGURE 3-49: Click a date selection to filter the pivot table or pivot chart.
Figure 3-50 illustrates how you can expand the slicer range with the mouse to include a wider range of dates in your filtered numbers.
[image: ]
FIGURE 3-50: You can expand the range on the Timeline slicer to include more data in the filtered numbers.
Want to quickly filter the pivot table by quarters? Well, that’s easy with a Timeline slicer. Simply click the time period drop-down menu and select Quarters. As you can see in Figure 3-51, you can also switch to Years or Days, if needed.
[image: ]
FIGURE 3-51: Quickly switch among Quarters, Years, Months, and Days.
[bookmark: _Ref127768955]

Using External Data with Power Pivot
In Module 2, I start an exploration of Power Pivot by showing you how to load the data already contained within the workbook you’re working on. But as you discover in this module, you’re not limited to using only the data that already exists in your Excel workbook.
Power Pivot can reach outside the workbook and import data found in external data sources. Indeed, what makes Power Pivot powerful is its ability to consolidate data from disparate data sources and build relationships between them. You can theoretically create a Power Pivot data model that contains some data from a SQL Server table, some data from a Microsoft Access database, and even data from a one-off text file.
In this module, I help you continue your journey by taking a closer look at the mechanics of importing external data into your Power Pivot data models. 
REMEMBER
This module has no associated sample file. But don’t worry: You can easily translate the information found here to your own data sources.
Loading Data from Relational Databases
One of the more common data sources used by Excel analysts is the relational database. It’s not difficult to find an analyst who frequently uses data from Microsoft Access, SQL Server, or Oracle databases. In this section, I walk you through the steps for loading data from external database systems.
Loading data from SQL Server
[image: ]SQL Server databases are some of the most used for the storing of enterprise-level data. Most SQL Server databases are managed and maintained by the IT department. To connect to a SQL Server database, you must work with your IT department to obtain Read access to the database you’re trying to pull from.
After you have access to the database, open the Power Pivot window (select PowerPivot
➪ Manage from the Excel Ribbon) and then click the From Other Sources command button on the Home tab. This opens the Table Import Wizard dialog box, shown in Figure 4-1. There, select the Microsoft SQL Server option and then click the Next button.





FIGURE 4-1: Open the Table Import Wizard and select Microsoft SQL Server.
The Table Import Wizard now asks for all the information it needs to connect to your database (see Figure 4-2). On this screen, you need to provide the information for the options described in this list:
· Friendly Connection Name: The Friendly Name field allows you to specify your own name for the external source. You typically enter a name that is descriptive and easy to read.
· Server Name: This is the name of the server that contains the database you’re trying to connect to. You get this from your IT department when you gain access. (Your server name will be different from the one shown in Figure 4-2.)
· Log On to the Server: These are your login credentials. Depending on how your IT department gives you access, select either Windows Authentication or SQL Server Authentication. Windows Authentication essentially means that the server recognizes you by your windows login. SQL Server Authentication means that the IT department created a distinct username and password for you. If you’re using SQL Server Authentication, you need to provide a username and password.
· Save My Password: You can select the check box next to Save My Password if you want your username and password to be stored in the workbook. Your connections can then remain refreshable when being used by other people. This option obviously has security considerations, because anyone can view the connection properties and see your username and password. You should use this option only if your IT department has set you up with an application account (an account created specifically to be used by multiple people).
· Database Name: Every SQL Server can contain multiple databases. Enter the name of the database you’re connecting to. You can get it from your IT department whenever someone gives you access.
[image: ]
FIGURE 4-2: Provide the basic information needed to connect to the target database.
After you enter all the pertinent information, click the Next button to see the next screen, shown in Figure 4-3. You have the choice of selecting from a list of tables and views or writing your own custom query using SQL syntax. In most cases, you choose the option to select from a list of tables.
[image: ]
FIGURE 4-3: Choose to select from a list of tables and views.
The Table Import Wizard reads the database and shows you a list of all available tables and views (see Figure 4-4). Tables have an icon that looks like a grid, and views have an icon that looks like a box on top of another box.
The idea is to place a check mark next to the tables and views you want to import. In Figure 4-4, note the check mark next to the MasterDates table. The Friendly Name column allows you to enter a new name that will be used to reference the table in Power Pivot.
[image: ]
FIGURE 4-4: The Table Import Wizard offers up a list of tables and views.
TIP
In Figure 4-4, you see the Select Related Tables button. After you select one or more tables, you can click this button to tell Power Pivot to scan for, and automatically select, any other tables that have a relationship with the table(s) you’ve already selected. This feature is handy to have when sourcing large databases with dozens of tables.


REMEMBER
Importing a table imports all columns and records for that table. This can have an impact on the size and performance of your Power Pivot data model. You will often find that you need only a handful of the columns from the tables you import. In these cases, you can use the Preview & Filter button.

NOTE:
Importing Tables Versus Importing Views
You may recall from reading Module 1 that views are query objects that are built to extract subsets of data from database tables based on certain predefined conditions. (That’s a mouthful!) Views are typically created by someone familiar with the database as a kind of canned reporting mechanism that outputs a ready-to-use data set.
There are pros and cons to importing tables versus views.
Tables come with the benefit of defined relationships. When you import tables, Power Pivot can recognize the relationships between the tables and automatically duplicate the relationships in the data model. Tables are also more transparent, allowing you to see all the raw unfiltered data. However, when you import tables, you must have some level of understanding of the database schema and how the values within the tables are utilized in context of the organization’s business rules. In addition, importing a table imports all the columns and records, whether you need them or not. To keep the size of your Power Pivot data model manageable, this often forces you to take the extra step of explicitly filtering out the columns you don’t need.
Views are often cleaner data sets because they are already optimized to include only the columns and data that are necessary. In addition, you don’t need to have an intimate knowledge of the database schema. Someone with that knowledge has already done the work for you — joined the correct tables, applied the appropriate business rules, and optimized output, for example. What you lose with views, however, is the ability for Power Pivot to automatically recognize and build relationships within the data model. Also, if you don’t have the rights to open the views in Design mode, you lose transparency because you cannot see exactly what the view is doing to come up with its final output.
In terms of which is better to use — tables or views — it’s generally considered a best practice to use views whenever possible. They not only provide you with cleaner, more user-friendly data but can also help streamline your Power Pivot data model by limiting the amount of data you import. Regardless, using tables is by no means frowned upon and is often the only option because of the lack of database rights or availability of predefined views. You may even find yourself importing both tables and views from the same database.
Click the table name to highlight it in blue (refer to Figure 4-4), and then click the Preview & Filter button. The Table Import Wizard opens the Preview Selected Table screen, shown in Figure 4-5. You can see all columns available in the table, with a sampling of rows.
Each column header has a check box next to it, indicating that the column will be imported with the table. Removing the check mark tells Power Pivot to not include that column in the data model. For instance, in Figure 4-5, only the first three columns are checked; the unchecked columns won’t be imported.
 [image: ]
FIGURE 4-5: The Preview & Filter screen allows you to uncheck columns you don’t need.
You also have the option to filter out certain records. Figure 4-6 demonstrates that clicking on the drop-down arrow for any of the columns opens a Filter menu that allows you to specify criterion to filter out unwanted records. This works just like the standard filtering in Excel. You can select and deselect the data items in the filtered list, or, if there are too many choices, you can apply a broader criterion by clicking Date Filters above the list. (If you’re filtering a textual column, it’s Text Filters.)
[image: ]
FIGURE 4-6: Use the dropdown arrows next to each column to filter out unneeded records.
After you finish selecting your data and applying any needed filters, you can click the Finish button on the Table Import Wizard to start the import process. The import log, shown in Figure 4-7, shows the progress of the import and summarizes the import actions taken after completion.
[image: ]
FIGURE 4-7: The last screen of the Table Import Wizard shows you the progress of your import actions.
The final step in loading data from SQL Server is to review and create any needed relationships. Back in the Power Pivot window, click the Diagram View command button on the Home tab. Power Pivot opens the diagram screen, where you can view and edit relationships as needed.
Refer to Module 2 for a refresher on managing relationships for tables imported into the internal data model.
TIP
Don’t panic if you feel like you’ve botched the column-and-record filtering on your imported Power Pivot table. Simply select the worrisome table in the Power Pivot window and open the Edit Table Properties dialog box (choose Design ➪ Table Properties). Note that this dialog box is basically the same Preview & Filter screen you encounter in the Import Table Wizard (refer to Figure 4-5). From here, you can select columns you originally filtered out, edit record filters, clear filters, or even use a different table/view.
Loading data from Microsoft Access databases
Because Microsoft Access has traditionally been made available with the Microsoft Office suite of applications, Access databases have long been used by organizations to store and manage mission-critical departmental data. Walk into any organization, and you will likely find several Access databases that contain useful data.
Unlike SQL Server databases, Microsoft Access databases are typically found on local desktops and directories. This means you can typically import data from Access without the help of your IT department.
Open the Power Pivot window and click the From Other Sources command button on the Home tab. This opens the Table Import Wizard dialog box, shown in Figure 4-8. Select the Microsoft Access option, and then click the Next button.
[image: ]
FIGURE 4-8: Open the Table Import Wizard and select Microsoft Access.
The Table Import Wizard asks for all the information it needs to connect to your database (see Figure 4-9).
On this screen, you need to provide the information for these options:
· Friendly Connection Name: The Friendly Name field allows you to specify your own name for the external source. You typically enter a name that is descriptive and easy to read.
· Database Name: Enter the full path of your target Access database. You can use the Browse button to search for and select the database you want to pull from.
[image: ]
FIGURE 4-9: Provide the basic information needed to connect to the target database.
· Log On to the Database: Most Access databases aren’t password protected. But if you’re connecting one that does require a username and password, enter your login credentials.
· Save My Password: You can select the check box next to Save My Password if you want your username and password to be stored in the workbook. Then your connections can remain “refreshable” when being used by other people. Keep in mind that anyone can view the connection properties and see your username and password.
WARNING
Because Access databases are essentially desktop files (.mdb or .accdb), they’re susceptible to being moved, renamed, or deleted. Be aware that the connections in your workbook are hard coded, so if you do move, rename, or delete your Access database, you can no longer connect it.
At this point, you can click the Next button to continue with the Table Import Wizard. From here on out, the process is virtually identical to importing SQL Server data, covered in the last section (starting at Figure 4-3).
Loading data from other relational database systems
Whether your data lives in Oracle, dBase, or MySQL, you can load data from virtually any relational database system. If you have the appropriate database drivers installed, you have a way to connect Power Pivot to your data.
Open the Power Pivot window and click the From Other Sources command button on the Home tab. This opens the Table Import Wizard dialog box, shown in Figure 4-10. The idea is to select the appropriate relational database system. If you need to import data from Oracle, select Oracle. If you need to import data from Sybase, select Sybase.
[image: ]
FIGURE 4-10: Open the Table Import Wizard and select your target relational database system.
Connecting to any of these relational systems takes you through roughly the same steps as importing SQL Server data, earlier in this module. You may see some alternative dialog boxes based on the needs of the database system you select.
Understandably, Microsoft cannot possibly create a named connection option for every database system out there. So, you may not find your database system listed. In this case, simply select the Others option (OLEDB/ODBC). Selecting this option opens the Table Import Wizard, starting with a screen asking you to enter or paste the connection string for your database system (see Figure 4-11).
[image: ]
FIGURE 4-11: Enter the connection string for your database system.
You may be able to get this connection string from your IT department. If you’re having trouble finding the correct syntax for your connection string, you can use the Build button to create the string via a set of dialog boxes. Pressing the Build button opens the Data Link Properties dialog box, shown in Figure 4-12.
[image: ]
FIGURE 4-12: Use the Data Link Properties dialog box to configure a custom connection string to your relational database system.
Start with the Provider tab, selecting the appropriate driver for your database system. The list you see on your computer will be different from the list shown in Figure 4-13. Your list will reflect the drivers you have installed on your own machine.
[image: ]
FIGURE 4-13: The Table Import Wizard displays the final syntax for your connection string.
After selecting a driver, move through each tab on the Data Link Properties dialog box and enter the necessary information. When it’s complete, click OK to return to the Table Import Wizard, where you see the connection string input box populated with the connection string needed to connect to your database system (see Figure 4-13).
Again, from here on out, the process is virtually identical to importing SQL Server data, as covered earlier in this module (starting at Figure 4-3).
REMEMBER
To connect to any database system, you must have that system’s drivers installed on your PC. Because SQL Server and Access are Microsoft products, their drivers are virtually guaranteed to be installed on any PC with Windows installed. The drivers for other database systems, however, need to be explicitly installed — typically, by the IT department either at the time the machine is loaded with corporate software or upon demand. If you don’t see the needed drivers for your database system, contact your IT department.
Loading Data from Flat Files
The term flat file refers to a file that contains some form of tabular data without any sort of structural hierarchy or relationship between records. The most common types of flat files are Excel files and text files. Whether anyone likes to admit it or not, a ton of important data is maintained in flat files. In this section, I tell you how to import these flat file data sources into the Power Pivot data model.
Loading data from external Excel files
In Module 2, I show you how to create linked tables by loading Power Pivot with the data contained within the same workbook. Linked tables have a distinct advantage over other types of imported data in that they immediately respond to changes in the source data within the workbook. If you change the data in one of the tables in the workbook, the linked table within the Power Pivot data model automatically changes. The real-time interactivity you get with linked tables is especially helpful if you’re making frequent changes to your data.
The drawback to linked tables is that the source data must be stored in the same workbook as the Power Pivot data model. This isn’t always possible. You’ll encounter plenty of scenarios where you need to incorporate Excel data into your analysis, but that data lives in another workbook. In these cases, you can use Power Pivot’s Table Import Wizard to connect to external Excel files.
Open the Power Pivot window and click the From Other Sources command button on the Home tab. This opens the Table Import Wizard dialog box, shown in Figure 4-14. Select the Excel File option and then click the Next button.
[image: ]
FIGURE 4-14: Open the Table Import Wizard and select Excel File.
The Table Import Wizard asks for all the information it needs to connect to your target workbook (see Figure 4-15).
[image: ]
FIGURE 4-15: Provide the basic information needed to connect to the target workbook.
On this screen, you need to provide the following information:
· Friendly Connection Name: In the Friendly Connection Name field, you specify your own name for the external source. You typically enter a name that is descriptive and easy to read.
· Excel File Path: Enter the full path of your target Excel workbook. You can use the Browse button to search for and select the workbook you want to pull from.
· Use First Row as Column Headers: In most cases, your Excel data will have column headers. Select the check box next to Use First Row As Column Headers to ensure that your column headers are recognized as headers when imported.
After you enter all the pertinent information, click the Next button to see the next screen, shown in Figure 4-16. You see a list of all worksheets and named ranges in the chosen Excel workbook. Place a check mark next to the data set you want to import. The Friendly Name column allows you to enter a new name that will be used to reference the data in Power Pivot.
[image: ]
FIGURE 4-16: Select the data sources to import.
REMEMBER
As discussed earlier in this module, in the section “Loading Data from Relational Databases,” you can use the Preview & Filter button to filter out unwanted columns and records, if needed. Otherwise, continue with the Table Import Wizard to complete the import process. As always, be sure to review and create relationships to any other tables you’ve loaded into the Power Pivot data model.
Loading external Excel data doesn’t give you the same interactivity you get with linked tables. As with importing database tables, the data you bring from an external Excel file is simply a snapshot. You need to refresh the data connection to see any new data that may have been added to the external Excel file (see “Refreshing and Managing External Data Connections,” later in this module).
Loading data from text files
The text file is another type of flat file used to distribute data. This type of file is commonly output from legacy systems and websites. Excel has always been able to consume text files. With Power Pivot, you can go further and integrate them with other data sources.
Open the Power Pivot window and click the From Other Sources command button on the Home tab. This opens the Table Import Wizard dialog box shown in Figure 4-17. Select the Text File option and then click the Next button.
[image: ]
FIGURE 4-17: Open the Table Import Wizard and select Text File.
The Table Import Wizard asks for all the information it needs to connect to the target text file (see Figure 4-18).
[image: ]
FIGURE 4-18: Provide the basic information needed to connect to the target text file.
On this screen, you provide the following information:
· Friendly Connection Name: The Friendly Connection Name field allows you to specify your own name for the external source. You typically enter a name that is descriptive and easy to read.
· File Path: Enter the full path of your target text file. You can use the Browse button to search for and select the file you want to pull from.
· Column Separator: Select the character used to separate the columns in the text file. Before you can do this, you need to know how the columns in your text file are delimited. For instance, a comma-delimited file will have commas separating its columns. A tab-delimited file will have tabs separating the columns. The drop-down list in the Table Import Wizard includes choices for the more common delimiters: Tab, Comma, Semicolon, Space, Colon, and Vertical bar.
· Use First Row as Column Headers: If your text file contains header rows, be sure to select the check box next to Use First Row as a Column Headers. This ensures that the column headers are recognized as headers when imported.
Notice that you see an immediate preview of the data in the text file. Here, you can filter out any unwanted columns by simply removing the check mark next to the column names. You can also use the drop-down arrows next to each column to apply any record filters.
Clicking the Finish button immediately starts the import process. Upon completion, the data from your text file will be part of the Power Pivot data model. As always, be sure to review and create relationships to any other tables you’ve loaded into Power Pivot.
Anyone who’s worked with text files in Excel knows that they’re notorious for importing numbers that look like numbers but are really coded as text. In standard Excel, you use Text to Columns to fix these kinds of issues. Well, this can be a problem in Power Pivot, too.
TIP
When importing text files, take the extra step of verifying that all columns have been imported with the correct data formatting. You can use the formatting tools found on the Power Pivot window’s Home tab to format any column in the data model.
Loading data from the Clipboard
Power Pivot includes an interesting option for loading data straight from the Clipboard — that is to say, pasting data you’ve copied from some other place. This option is meant to be used as a one-off technique to quickly get useful information into the Power Pivot data model.
As you consider this option, keep in mind that there is no real data source. It’s just you manually copying and pasting. You have no way to refresh the data, and you have no way to trace back to where you copied the data from.
Imagine that you’ve received the Word document shown in Figure 4-19. You like the nifty table of holidays within the document, and you believe it would be useful in your Power Pivot data model.
[image: ]
FIGURE 4-19: You can copy data straight out of Microsoft Word.
You can copy the table and then go to the Power Pivot window and click the Paste command on the Home tab. This opens the Paste Preview dialog box, shown in Figure 4-20, where you can review what exactly will be pasted. You won’t see many options here. You can specify the name that will be used to reference the table in Power Pivot, and you can specify whether the first row is a header.
[image: ]
FIGURE 4-20: The Paste Preview dialog box gives you a chance to see what you’re pasting.
Clicking the OK button imports the pasted data into Power Pivot without a lot of fanfare. At this point, you can adjust the data formatting and create the needed relationships.
Loading Data from Other Data Sources
At this point, I’ve covered the data sources that are most important to most Excel analysts. Still, there are a few more data sources that Power Pivot can connect to and load data from. I touch on some of these data sources later in this course, though others remain out of scope.
Although these data sources are not likely to be used by your average analyst, it’s worth dedicating a few lines to each one, if only to know that they exist and are available if ever you should need them:
· Microsoft SQL Azure: SQL Azure is a cloud-based relational database service that some companies use as an inexpensive way to gain the benefits of SQL Server without taking on the full cost of hardware, software, and IT staff. 
Power Pivot can load data from SQL Azure in much the same way as the other relational databases I talk about in this module.
· Microsoft Analytics Platform System: Azure Synapse Analytics is an analytics service that allows for data integration, enterprise data warehousing, and big data analytics. From a Power Pivot perspective, it’s no different than connecting to any other relational database.
· Microsoft Analysis Services: Analysis Services is Microsoft’s OLAP (Online Analytical Processing) product. The data in Analysis Services is traditionally stored in a multidimensional cube.
· Report: The curiously named Report data source refers to SQL Server Reporting Services reports. In a very basic sense, Reporting Services is a business intelligence tool used to create stylized PDF-style reports from SQL Server data. In the context of Power Pivot, a Reporting Services Report can be used as a data-feed service, providing a refreshable connection to the underlying SQL Server data.
· Other Feeds: The Other Feeds data source allows you to import data from OData web services into Power Pivot. OData connections are facilitated by XML Atom files. Point the OData connection to the URL of the .atomsvcs file and you essentially have a connection to the published web service.
Refreshing and Managing External Data Connections
When you load data from an external data source into Power Pivot, you essentially create a static snapshot of that data source at the time of creation. Power Pivot uses that static snapshot in its Internal Data Model.
As time goes by, the external data source may change and grow with newly added records. However, Power Pivot is still using its snapshot, so it can’t incorporate any of the changes in your data source until you take another snapshot.
The action of updating the Power Pivot data model by taking another snapshot of your data source is called refreshing the data. You can refresh manually, or you can set up an automatic refresh.
Manually refreshing Power Pivot data
On the home tab of the Power Pivot window, you see the Refresh command. Click the drop-down arrow below it to see two options shown in Figure 4-21: Refresh and Refresh All.
[image: ] FIGURE 4-21: Power Pivot allows you to refresh one table or all tables.
Use the Refresh option to refresh the Power Pivot table that’s active. If you’re on the Products_Table tab in Power Pivot, clicking Refresh reaches out to the external source and requests an update for only that table. This works nicely when you need to strategically refresh only certain data sources.
Use the Refresh All option to refresh all tables in the Power Pivot data model.
Setting up automatic refreshing
You can configure your data sources to automatically pull the latest data and refresh Power Pivot.
Go to the Data tab on the Ribbon and select the Queries & Connections command. The Queries & Connections task pane, shown in Figure 4-22, opens. Right-click the data connection you want to work with and then click the Properties button.
[image: ]
FIGURE 4-22: Select a connection and click the Properties button.
With the Connection Properties dialog box open, select the Usage tab. Here, you’ll find an option to refresh the chosen data connection every X minute and an option to refresh the data connection when the Excel workbook is opened (see Figure 4-23):
· Refresh Every X Minutes: Placing a check next to this option tells Excel to automatically refresh the chosen data connection a specified number of minutes. This refreshes all tables associated with that connection.
· Refresh Data When Opening the File: Placing a check mark next to this option tells Excel to automatically refresh the chosen data connection after opening of the workbook. This refreshes all tables associated with that connection as soon as the workbook is opened.
[image: ]
FIGURE 4-23: The Connection Properties dialog box lets you configure the chosen data connection to refresh automatically.
Preventing Refresh All
Earlier in this section, you see that you can refresh all connections that feed Power Pivot, by using the Refresh All command (refer to Figure 4-21). Well, there are two more places where you can click Refresh All in Excel: on the Data tab in the Excel Ribbon and on the PivotTable Analyse tab you see when working in a pivot table.
Clicking any Refresh All button anywhere in Excel essentially completely reloads Power Pivot, refreshes all pivot tables, and updates all workbook data connections. If your Power Pivot data model imports millions of lines of data from an external data source, you may well want to avoid using the Refresh All feature.
Luckily, you have a way to prevent certain data connections from refreshing when Refresh All is selected. Go to the Data tab on the Excel Ribbon and select the Queries & Connections command. This opens the Queries & Connections task pane, where you right-click the data connection you want to configure, and then click the Properties button.
When the Connection Properties dialog box has opened, select the Usage tab and then remove the check mark next to the Refresh This Connection on Refresh All (as shown in Figure 4-24).
[image: ]
FIGURE 4-24: The Connection Properties dialog box lets you configure the chosen data connection to ignore the Refresh All command.
Editing the data connection
In certain instances, you may need to edit the source data connection after you’ve already created it. Unlike refreshing, where you simply take another snapshot of the same data source, editing the source data connection allows you to go back and reconfigure the connection itself. Here are a few reasons you may need to edit the data connection:
· The location or server or data source file has changed.
· The name of the server or data source file has changed.
· You need to edit your login credentials or authentication mode.
· You need to add tables you left out during initial import.
In the Power Pivot window, go to the Home tab and click the Existing Connections command button. The Existing Connections dialog box, shown in Figure 4-25, opens. Your Power Pivot connections are under the Power Pivot Data Connections subheading. Choose the data connection that needs editing.
[image: ]
FIGURE 4-25: Use the Existing Connections dialog box to reconfigure your Power Pivot source data connections.
After your target data connection is selected, look to the Edit and Open buttons. The button you click depends on what you need to change:
· Edit button: Lets you reconfigure the server address, file path, and authentication settings.
· Open button: Lets you import a new table from the existing connection, which is handy when you’ve inadvertently missed a table during the initial loading of data.
· Refresh button: Lets you refresh the selected data source.
· Browse for More: Lets you quickly establish a new data connection by pointing to an existing Office Database Connection (.odc) file.


[bookmark: _Ref127768963]Working Directly with the Internal Data Model
In the preceding modules, you use the Power Pivot add-in to work with the internal data model. But as you’ll see in this module, you can use a combination of pivot tables and Excel data connections to directly interact with the internal data model, without the Power Pivot add-in.
EXERCISE FILES: Module 5 Sample File.xlsx 
Directly Feeding the Internal Data Model
Imagine that you have the Transactions table you see in Figure 5-1, and on another worksheet you have an Employees table (see Figure 5-2) that contains information about the employees.
[image: ]
FIGURE 5-1: This table shows transactions by employee number.
[image: ]
FIGURE 5-2: This table provides information on employees: first name, last name, and job title.
You need to create an analysis that shows sales by job title. This would normally be difficult given the fact that sales and job title are in two separate tables. But with the internal data model, you can follow these simple steps:
1. Click inside the Transactions data table and start a new pivot table by choosing Insert ➪ PivotTable from the Ribbon.
2. In the Create PivotTable dialog box, place a check next to the option called Add This Data to the Data Model (see Figure 5-3) and then click OK.
3. Click inside the Employees data table and start a new pivot table by choosing Insert ➪ PivotTable from the Ribbon.
Again, be sure to select the Add This Data to the Data Model option, as shown in Figure 5-4.
[image: ]
FIGURE 5-3: When you create a new pivot table from the Transactions table, be sure to select Add This Data to the Data Model.

[image: ]
FIGURE 5-4: Create a new pivot table from the Employees table and select Add This Data to the Data Model.
TIP
Notice that in Figures 5-3 and 5-4, the Create PivotTable dialog boxes are referencing named ranges. That is to say, each table was given a specific name. When you’re adding data to the internal data model, it’s a best practice to name the data tables. This way, you can easily recognize your tables in the internal data model.
If you don’t name your tables, the internal data model shows them as Range1, Range2, and so on.
4. To give the data table a name, simply highlight all data in the table, and then select Formulas ➪ Define Name command from the Ribbon. In the dialog box, enter a name for the table.
Repeat for all other tables.
5. After both tables have been added to the internal data model, open the PivotTable Fields list and choose the ALL selector, as shown in Figure 5-5.
This step shows both ranges in the field list.
[image: ] FIGURE 5-5: Select ALL in the PivotTable Fields list to see both tables in the internal data model.
6. Build out the pivot table as normal. In this case, Job_Title is placed in the Row area, and Sales_Amount goes to the Values area.
As you can see in Figure 5-6, Excel immediately recognizes that you’re using two tables from the internal data model and prompts you to create a relationship between them. You have the option to let Excel autodetect the relationships between your tables or to click the Create button. Always create the relationships yourself, to avoid any possibility of Excel getting it wrong.
[image: ]
FIGURE 5-6: When Excel prompts you, choose to create the relationship between the two tables.
7. Click the Create button.
Excel opens the Create Relationship dialog box, shown in Figure 5-7. There, you select the tables and fields that define the relationship. In Figure 5-7, you can see that the Transactions table has a Sales_Rep field. It’s related to the Employees table via the Employee_Number field.
[image: ]
FIGURE 5-7: Build the appropriate relationship using the Table and Column drop-down lists.
After you create the relationship, you have a single pivot table that effectively uses data from both tables to create the analysis you need. Figure 5-8 illustrates that, by using the Excel internal data model, you’ve achieved the goal of showing sales by job title.
[image: ]
FIGURE 5-8: You’ve achieved your goal of showing sales by job title.
REMEMBER
In Figure 5-7, you see that the lower-right drop-down is named Related Column (Primary). The term primary means that the internal data model uses this field from the associated table as the primary key.
A primary key is a field that contains only unique non-null values (no duplicates or blanks). Primary key fields are necessary in the data model to prevent aggregation errors and duplications. Every relationship you create must have a field designated as the primary key.
The Employees table (in the scenario in Figure 5-7) must have all unique values in the Employee_Number field, with no blanks or null values. This is the only way that Excel can ensure data integrity when joining multiple tables.

Note:
The Limitations of Power Pivot-Driven Pivot Tables
Pivot tables built on top of Power Pivot or the internal data model come with limitations that could be showstoppers in terms of your reporting needs. Here’s a quick rundown of the limitations you should consider before deciding to base your pivot table reporting on Power Pivot or the internal data model:
· The Group feature is disabled for Power Pivot–driven pivot tables. You can’t roll dates into months, quarters, or years, for example.
· In a standard pivot table, you can double-click a cell in the pivot to drill into to the rows that make up the figure in that cell. In Power Pivot–driven pivot tables, however, you see only the first 1,000 rows.
· Power Pivot–driven pivot tables don’t allow you to create the traditional Calculated Fields and Calculated Items found in standard Excel pivot tables.
· Workbooks that use the Power Pivot data model can’t be refreshed or configured if opened in a version of Excel earlier than Excel 2013.
· You can’t use custom lists to automatically sort the data in your Power Pivot–driven pivot tables.
· Neither the Product nor Count Numbers summary calculations are available in Power Pivot–driven pivot tables.
Managing Relationships in the Internal Data Model
After you assign tables to the internal data model, you might need to adjust the relationships between the tables. To make changes to the relationships in an internal data model, click the Data tab on the Ribbon and select the Relationships command. The Manage Relationships dialog box, shown in Figure 5-9, opens.
[image: ]
FIGURE 5-9: The Manage Relationships dialog box enables you to make changes to the relationships in the internal data model.
Here, you’ll find the following commands:
· New: Create a new relationship between two tables in the internal data model.
· Auto-Detect: Ask Power Pivot to automatically detect and create relationships.
· Edit: Alter the selected relationship.
· Activate: Enforce the selected relationship, telling Excel to consider the relationship when aggregating and analysing the data in the internal data model.
· Deactivate: Turn off the selected relationship, telling Excel to ignore the relationship when aggregating and analysing the data in the internal data model.
· Delete: Remove the selected relationship.
Managing Queries and Connections
Select the Data tab on the Ribbon and then select the Queries & Connections command. Excel will activate the Queries & Connections task pane (see Figure 5-10). At the top of the task pane, you’ll see two tabs: Queries and Connections. The Queries tab lets you view and manage the queries within the current workbook. The Connections tab lets you manage the connection information stored in your workbook.
[image: ]
FIGURE 5-10: Use the Queries & Connections task pane to manage the queries and connections in the internal data model.
If you receive a workbook that is unfamiliar to you, it’s best practice to activate Queries & Connections just to see if you’re dealing with any external connections or queries in the internal data model of the workbook.
Right-click any of the entries on the Connections tab to expose a shortcut menu for that entry, allowing you to refresh the connection, delete the connection, or edit the connection properties.
TIP
The connection name for the internal data model will always be ThisWorkbook-DataModel. Excel won’t allow you to delete the ThisWorkbookDataModel connection.
Creating a New Pivot Table Using the Internal Data Model
In certain instances, you may want to create a pivot table from scratch using the existing internal data model as the source data. Here are the steps to do so:
1. Choose Insert ➪ PivotTable from the Ribbon.
The Create PivotTable dialog box opens.
2. Select the Use an External Data Source option, as shown in Figure 5-11, and then click the Choose Connection button.
[image: ]
FIGURE 5-11: Open the Create PivotTable dialog box and choose the external data-source option.
You see the Existing Connections dialog box, as shown in Figure 5-12.
[image: ]
FIGURE 5-12: Use the Existing Connections dialog box to select the Data Model as the data source for your pivot table.
3. On the Tables tab, select Tables in Workbook Data Model, and then click the Open button.
You return to the Create PivotTable dialog box.
4. Click the OK button to create the pivot table.
If all goes well, you see the PivotTable Fields dialog box with all tables that are included in the internal data model, as shown in Figure 5-13.
[image: ]
FIGURE 5-13: The newly created pivot table shows all tables in the internal data model



Filling the Internal Data Model with Multiple External Data Tables
Suppose you have an Access database that contains a normalized set of tables. You want to analyse the data in that database in Excel, so you decide to use the new Excel internal data model to expose the data you need through a pivot table.
To accomplish this task, follow these steps:
1. Select Data ➪ Get Data ➪ From Database ➪ From Microsoft Access Database (see Figure 5-14).
[image: ]
FIGURE 5-14: Getting data from a Microsoft Access database.
2. Browse to your target Access database and open it.
The Navigator dialog box opens.
3. Place a check mark next to the Enable Selection of Multiple Tables option (see Figure 5-15).
[image: ] FIGURE 5-15: Enable the selection of multiple tables.
4. Place a check mark next to each table that you want to import into the internal data model.
5. Click the drop-down arrow next to the Load button and select the Load To option as shown in Figure 5-16.
[image: ]
FIGURE 5-16: Place a check next to each table you want import to the internal data model, then activate the Load To option.
The Import Data dialog box opens (see Figure 5-17).
[image: ]
FIGURE 5-17: Create a PivotTable Report from the Import Data dialog.
6. Choose the PivotTable Report option and click OK to create the base pivot.
You now have a pivot table based on external data imported into the internal data model (see Figure 5-18). A quick look at the Pivot Table Field list shows all the external data sources imported into the internal data model.
[image: ]
FIGURE 5-18: You’re ready to build your pivot table analysis based on multiple external data tables!
In just a few clicks, you’ve created a powerful platform to build and maintain pivot table analysis based on data in an Access database!
TIP
When you import tables from multiple data sources, Excel tries to detect and create relationships between the tables. It typically does a good job at recognizing the appropriate relationships, especially when your tables contain common column names such as EmployeeID and SalesRep. Though Excel gets the relationships right in most cases, it’s always best to confirm the right relationships were created before using your pivot table. Use the Manage Relationships dialog box (shown in Figure 5-9) to double-check the relationships. To activate the Manage Relationships dialog, click inside your pivot table and then choose PivotTable Analyse ➪ Relationships.


[bookmark: _Ref127768966]Adding Formulas to Power Pivot
When analysing data with Power Pivot, you often find the need to expand your analysis to include data based on calculations that are not in the original data set. Power Pivot has a robust set of functions (called DAX functions) that allow you to perform mathematical operations, recursive calculations, data lookups, and much more.
This module introduces you to DAX functions and provides the ground rules for building your own calculations in Power Pivot data models.
Enhancing Power Pivot Data with Calculated Columns
Calculated columns are columns you create to enhance a Power Pivot table with your own formulas. When you enter calculated columns directly in the Power Pivot window, they become part of the source data you use to feed your pivot table. Calculated columns work at the row level. That is to say, the formulas you create in a calculated column perform their operations based on the data in each individual row. For example, if you have a Revenue column and a Cost column in your Power Pivot table, you could create a new column that calculates [Revenue] minus [Cost]. This simple calculation is valid for each row in the data set.
Calculated measures are used to perform more complex calculations that work on an aggregation of data. These calculations are applied directly to a pivot table, creating a sort of virtual column that can’t be seen in the Power Pivot window. Calculated measures are needed whenever you need to calculate based on an aggregated grouping of rows — for example, the sum of [Year2] minus the sum of [Year1].
Creating your first calculated column
Creating a calculated column works much like building formulas in an Excel table. Follow these steps to create a calculated column:
1. Open the Power Pivot Formulas.xlsx sample file, activate the Power Pivot window (by clicking the Manage button on the Power Pivot Ribbon tab), and then select the InvoiceDetails tab.
In the table, you see an empty column on the far right, labelled Add Column.
2. Click on the first blank cell in that column.
3. On the Formula bar, enter the following formula (as shown in Figure 6-1):
=[UnitPrice]*[Quantity]
[image: ]
FIGURE 6-1: Start the calculated column by entering an operation on the Formula bar.
4. Press Enter.
The formula populates the entire column, and Power Pivot automatically renames the column to Calculated Column 1.
5. Double-click on the column label and rename the column Total Revenue.
TIP
You can rename any column in the Power Pivot window by double-clicking the column name and entering a new name. Alternatively, you can right-click any column and choose the Rename option.
TIP
You can build calculated columns by clicking instead of typing. For example, rather than manually enter =[UnitPrice]*[Quantity], you can enter the equal sign (=), click the UnitPrice column, type the asterisk (*), and then click the Quantity column. You can also enter your own static data. For example, you can enter a formula to calculate a 10-percent tax rate by entering =[UnitPrice]*1.10.
Each calculated column you create is automatically available in any pivot table connected to the Power Pivot Data Model. You don’t have to take any action to get your calculated columns into the pivot table. Figure 6-2 shows the Total Revenue calculated column in the PivotTable Fields List. These calculated columns can be used just as you would use any other field in the pivot table.
[image: ]
FIGURE 6-2: Calculated columns automatically show up in the PivotTable Fields List.
TIP
If you need to edit the formula in a calculated column, find the calculated column in the Power Pivot window, click the column, and then make changes directly on the Formula bar.
See Module 2 for a refresher on how to create a pivot table from Power Pivot.
Formatting calculated columns
You often need to change the formatting of Power Pivot columns to appropriately match the data within them. For example, you may want to show numbers as currency, remove decimal places, or display dates in a certain way.
You’re by no means limited to formatting only calculated columns. The following steps can be used to format any column you see in the Power Pivot window:
1. In the Power Pivot window, click on the column you want to format.
2. Go to the Home tab of the Power Pivot window and find the Formatting group (see Figure 6-3).
[image: ]
FIGURE 6-3: You can use the formatting tools found on the Power Pivot window’s Home tab to format any column in the Data Model.
3. Use the options to alter the formatting of the column as you see fit.
TIP
Veteran Excel pivot table users know that changing pivot table number formats one data field at a time is a pain. One fantastic feature of Power Pivot formatting is that any format you apply to the columns in the Power Pivot window is automatically applied to all pivot tables connected to the Data Model.
Referencing calculated columns in other calculations
As with all calculations in Excel, Power Pivot allows you to reference a calculated column as a variable in another calculated column. Figure 6-4 illustrates this concept with a new calculated column named Gross Margin. Notice that on the Formula bar, the calculation is using the following formula:
=[Total Revenue]-([UnitCost]*[Quantity])
[image: ]
Hiding calculated columns from end users
Because calculated columns can reference each other, you can imagine creating columns simply as helper columns for other calculations. You may not want your end users to see these columns in your client tools. (In this context, client tools refer to pivot tables, Power View dashboards, and Power Map.)
Like hiding columns on an Excel worksheet, Power Pivot allows you to hide any column. (It doesn’t have to be a calculated column.) To hide columns, select the columns you want hidden, right-click the selection, and then choose the Hide from Client Tools option (as shown in Figure 6-5).
[image: ]
FIGURE 6-5: Right-click and select Hide from Client Tools.
REMEMBER
When a column is hidden, it doesn’t show as an available selection in the Pivot-Table Fields List. However, if the column you’re hiding is already part of the pivot report (meaning you’ve already dragged it onto the pivot table), hiding the column doesn’t automatically remove it from the report. Hiding merely affects the ability to see the column in the PivotTable Fields List.
Note in Figure 6-6 that Power Pivot recolours columns based on their attributes. Hidden columns are subdued and greyed out, whereas calculated columns that are not hidden have a darker (black) header.
[image: ]
FIGURE 6-6: Hidden columns are greyed-out, and calculated columns have darker headings.
TIP
To unhide columns, select the hidden columns in the Power Pivot window, right-click on the selection, and then choose the Unhide from Client Tools option.


Utilizing DAX to Create Calculated Columns
Data Analysis Expressions, or DAX, is essentially the formula language that Power Pivot uses to perform calculations within its own construct of tables and columns.
The DAX formula language comes supplied with its own set of functions. Some of these functions can be used in calculated columns for row-level calculations, and others are designed to be used in calculated measures to aggregate operations.
In this section, I touch on some of the DAX functions that you can leverage in calculated columns.
REMEMBER
The examples of DAX demonstrated in this module are meant to give you a sense of how calculated columns and calculated measures work. You can explore DAX more fully in Module 7.
Identifying DAX functions that are safe for calculated columns
Earlier in this module, you use the Formula bar within the Power Pivot window to enter calculations. Next to the Formula bar, you may have noticed the Insert Function button: the button labelled fx. It’s like the Insert Function button in Excel. Clicking this button opens the Insert Function dialog box, shown in Figure 6-7. Using this dialog box, you can browse, search for, and insert the available DAX functions.
[image: ]
FIGURE 6-7: The Insert Function dialog box shows you all available DAX functions.
As you look through the list of DAX functions, notice that many of them look like the common Excel functions that most people are familiar with. But make no mistake: They aren’t Excel functions. Whereas Excel functions work with cells and ranges, these DAX functions are designed to work at the table and column levels.
To understand what I mean, start a new calculated column on the Invoice Details tab. Click on the Formula bar and type a good old SUM function: SUM([Gross Margin]). The result is shown in Figure 6-8.
[image: ]
FIGURE 6-8: The DAX SUM function can only sum the column as a whole.
As you can see, the SUM function sums the entire column. This is because Power Pivot and DAX are designed to work with tables and columns. Power Pivot has no construct for cells and ranges. It doesn’t even have column letters and row numbers on its grid. Though you would normally reference a range (as in an Excel SUM function), DAX basically takes the entire column.
The bottom line is that not all DAX functions can be used with calculated columns. Because a calculated column evaluates at the row level, only DAX functions that evaluate single data points can be used in a calculated column.
Here’s a good rule of thumb: If the function requires an array or a range of cells as an argument, it isn’t viable in a calculated column.
So, functions such as SUM, MIN, MAX, AVERAGE, and COUNT don’t work in calculated columns. Functions that require only single data-point arguments work quite well in calculated columns: functions such as YEAR, MONTH, MID, LEFT, RIGHT, IF, and IFERROR.
Building DAX-driven calculated columns
To demonstrate the usefulness of employing a DAX function to enhance calculated columns, let’s return to the walk-through example. Go to the Power Pivot window and select the InvoiceHeader tab on the Ribbon. If you’ve accidentally closed the Power Pivot window, you can open it by clicking the Manage command button on the Power Pivot Ribbon tab.
The InvoiceHeader tab, shown in Figure 6-9, contains an InvoiceDate column. Although this column is valuable in the raw table, the individual dates aren’t convenient when analyzing the data with a pivot table. It would be beneficial to have a column for Month and a column for Year. This way, you could aggregate and analyse the data by month and year.
[image: ]
FIGURE 6-9: DAX functions can help enhance the invoice header data with Year and Month time dimensions.
For this endeavor, you use the DAX functions YEAR( ), MONTH( ), and FORMAT( ) to add some time dimensions to the Data Model. Follow these steps:
1. In the InvoiceHeader table, click on the first blank cell in the empty column labeled Add Column, on the far right.
2. On the Formula bar, type =YEAR([InvoiceDate]) and then press Enter. ower Pivot automatically renames the column to Calculated Column 1.
3. Double-click on the column label and rename the column Year.
4. Starting in the next column, click on the first blank cell in the empty column labeled Add Column, on the far right.
5. On the Formula bar, type =MONTH([InvoiceDate]), and then press Enter. ower Pivot automatically renames the column to Calculated Column 1.
6. Double-click on the column label and rename the column Month.
7. Starting in the next column, click on the first blank cell in the empty column labeled Add Column, on the far right.
8. On the Formula bar, type =FORMAT([InvoiceDate],”mmm”) and then press Enter.
Power Pivot automatically renames the column to Calculated Column 1.
9. Double-click on the column label and rename the column Month Name.
After completing these steps, you should have three new calculated columns similar to the ones shown in Figure 6-10.
[image: ]
FIGURE 6-10: Using DAX functions to supplement a table with Year, Month, and Month Name columns.
As I mention earlier in this module, creating calculated columns automatically makes them available through the PivotTable Fields List (see Figure 6-11).
[image: ]
FIGURE 6-11: DAX calculations are immediately available in any connected pivot table.
Month sorting in Power Pivot–driven pivot tables
One of the more annoying aspects of Power Pivot is that it doesn’t inherently know how to sort months. Unlike standard Excel, Power Pivot doesn’t use the built-in custom lists that define the order of month names. Whenever you create a calculated column such as [Month Name] and place it into your pivot table, Power Pivot puts those months in alphabetical order. Figure 6-12 illustrates this in a pivot table designed to show average revenue by month.
[image: ]
FIGURE 6-12: Month names in Power Pivot-driven pivot tables don’t automatically sort in month order.
The fix for this problem is easy. Open the Power Pivot window and select the Home tab. There, click the Sort by Column command button. The Sort by Column dialog box the opens, as shown in Figure 6-13.
[image: ]
FIGURE 6-13: The Sort by Column dialog box lets you define how columns are sorted.
The idea is to select the column you want sorted and then select the column you want to sort by. In this scenario, you want to sort Month Name by month.
After you confirm the change, it initially appears as though nothing has happened. The reason is that the sort order you defined isn’t for the Power Pivot window. The sort order is applied to the pivot table. You can switch over to Excel to see the result in the pivot table (see Figure 6-14).
[image: ]
FIGURE 6-14: The month names now show in the correct month order.
TIP
Pivot tables based on your data model will first inherit the formatting and sorting explicitly applied in the data model, then will apply any formatting you set in the pivot table itself. In other words, any formatting you apply in the pivot table itself will supersede the formatting and sorting applied via the Power Pivot window.
Referencing fields from other tables
Sometimes, the operation you’re trying to perform with a calculated column requires you to utilize fields from other tables within the Power Pivot Data Model. For example, you may need to account for a customer-specific discount amount from the Customers table (see Figure 6-15) when creating a calculated column in the InvoiceDetails table.
[image: ]
FIGURE 6-15: The discount amount in the Customers table can be used in a calculated column in another table.
To accomplish this, you can use a DAX function named RELATED. Similar to VLOOKUP in standard Excel, the RELATED function allows you to look up values from one table in order to use them in another.
Follow these steps to create a new calculated column that displays a discounted amount for each transaction in the InvoiceDetails table:
1. In the InvoiceDetails table, click on the first blank cell in the empty column labeled Add Column, on the far right.
2. On the Formula bar, type =RELATED(.
As soon as you enter the open parenthesis, a menu of available fields (shown in Figure 6-16) is displayed. Note that the items in the list represent the table name followed by the field name in brackets. In this case, you’re interested in the Customers[Discount Amount] field.
[image: ]
FIGURE 6-16: Use the RELATED function to look up a field from another table.
3. Double-click the Customers[Discount Amount] field and then press Enter.
Power Pivot automatically renames the column to Calculated Column 1.
4. Double-click on the column label and rename the column Discount%.
5. Starting in the next column, click on the first blank cell in the empty column labeled Add Column, on the far right.
6. On the Formula bar, type =[UnitPrice]*[Quantity]*(1-[Discount%]) and then press Enter.
Power Pivot automatically renames the column to Calculated Column 1.
7. Double-click on the column label and rename the column Discounted Revenue.
The reward for your efforts is a new column that uses the discount percent from the Customers table to calculate discounted revenue for each transaction. Figure 6-17 illustrates the new calculated column.
[image: ]
FIGURE 6-17: The final discount amount calculated column using the Discount% column from the Customers table.
REMEMBER
The RELATED function leverages the relationships you defined when creating the data model to perform the lookup. So, this list of choices contains only the fields that are available based on the relationships you defined.
Nesting functions
In the example from the preceding section, you first create a Discount% column using the RELATED function, and then you use that column in another calculated column to calculate the discount amount.
You don’t necessarily have to create multiple calculated columns to accomplish a task like this one. You could instead nest the RELATED function into the discount amount calculation. The following line shows the syntax for the nested calculation:
=[UnitPrice]*[Quantity]*(1-RELATED(Customers[Discount Amount]))
As you can see, nesting simply means to embed functions within a calculation. In this case, rather than use the RELATED function in a separate Discount% field, you can embed it directly into the discounted revenue calculation.
Nesting functions can definitely save time and even improve performance in larger data models. On the other hand, complicated nested functions can be harder to read and understand.
Understanding Calculated Measures
You can enhance the functionality of your Power Pivot reports by using a kind of calculation called a calculated measure. Calculated measures are not applied to the Power Pivot window like calculated columns. Instead, they’re applied directly to the pivot table, creating a sort of virtual column that isn’t visible in the Power Pivot window. You use calculated measures when you need to calculate based on an aggregated grouping of rows.
Creating a calculated measure
Imagine that you want to show the difference in unit costs between the years 2020 and 2019 for each of your customers. Think about what technically must be done to achieve this calculation: You have to figure out the sum of unit costs for 2020, determine the sum of unit costs for 2019, and then subtract the sum of 2020 from the sum of 2019. This calculation simply can’t be completed using calculated columns. Using calculated measures is the only way to calculate the cost variance between 2020 and 2019. 
Follow these steps to create a calculated measure:
1. Start with a pivot table created from a Power Pivot Data Model.
REMEMBER
The Power Pivot Formulas.xlsx workbook contains the Calculated Measures tab with a pivot table already created.
2. Click the Power Pivot tab on the Excel Ribbon and choose Measures ➪ New Measure.
This step opens the Measure dialog box, shown in Figure 6-18.
[image: ] FIGURE 6-18: Creating a new calculated measure.
	In this example, you use the following DAX formula:
	=CALCULATE(
		SUM(InvoiceDetails[UnitCost]),
		YEAR(InvoiceHeader[InvoiceDate])=2020
	  )
This formula uses the CALCULATE function to sum the Total Revenue column from the InvoiceDetails table, where the Year column in the InvoiceHeader is equal to 2020.
3. In the Measure dialog box, set the following inputs:
· Table name: Choose the table you want to contain the calculated measure when looking at the PivotTable Fields List. Don’t sweat this decision too much. The table you select has no bearing on how the calculation works. It’s simply a preference on where you want to see the new calculation within the PivotTable Fields List.
· Measure name: Give the calculated measure a descriptive name.
· Description: Enter a friendly description to document what the calculation does.
· Formula: Enter the DAX formula that will calculate the results of the new field.
· Formatting Options: Specify the formatting for the calculated measure results.
4. Click the Check Formula button to ensure that there are no syntax errors.
If your formula is well formed, you see the message No errors in formula. If the formula has errors, you see a full description.
5. Click the OK button to confirm the changes and close the dialog box.
You see your newly created calculated measure in the pivot table.
6. Repeat Steps 2–5 for any other calculated measure you need to create.
In this example, you need a measure to show the 2019 cost:
=CALCULATE(
SUM(InvoiceDetails[UnitCost]),
YEAR(InvoiceHeader[InvoiceDate])=2019
)
You also need a measure to calculate the variance:
=[2020 Revenue]-[2019 Revenue]
Figure 6-19 illustrates the newly created calculated measures. The calculated measures are applied to each customer, displaying the variance between their 2020 and 2019 costs. As you can see, each calculated measure is available for selection in the PivotTable Fields List.
[image: ]
FIGURE 6-19: Calculated measures can be seen in the PivotTable Fields List.
TIP
Always attempt to achieve readability by using carriage returns and spaces. In Figure 6-18, the DAX calculation is entered with carriage returns and spaces. This is purely for readability purposes. DAX ignores white spaces and isn’t case sensitive, so it’s quite forgiving on how you structure the calculation.
Editing and deleting calculated measures
You may find that you need to either edit or delete a calculated measure. You can do so by following these steps:
1. Click anywhere inside the pivot table, click the Power Pivot tab on the Excel Ribbon, and choose Measures ➪ Manage Measures.
This step opens the Manage Measures dialog box, shown in Figure 6-20.
[image: ]
FIGURE 6-20: The Manage Measures dialog box lets you edit or delete your calculated measures.
2. Select the target calculated measure, and click one of these two buttons:
· Edit: Opens the Measure dialog box, where you can make changes to the calculation setting.
· Delete: Opens a message box asking you to confirm that you want to remove the measure. After you confirm, the calculated measure is removed.
Free Your Data with Cube Functions
Cube functions are Excel functions that can be used to access the data in a Power Pivot Data Model outside the constraints of a pivot table. Although cube functions aren’t technically used to create calculations themselves, they can be used to free PowerPivot data so that it can be used with formulas you may have in other parts of your Excel spreadsheet.
One of the easiest ways to start exploring cube functions is to allow Excel to convert your Power Pivot pivot table into cube functions. The idea is to tell Excel to replace all cells in the pivot table with a formula that connects back to the Power Pivot Data Model.
The Power Pivot Formulas.xlsx workbook contains a Cube Functions tab with a pivot table already created. Place your cursor anywhere inside the pivot table, and then select PivotTable Analyse ➪ OLAP Tools ➪ Convert to Formulas.
After a second or two, the cells that used to house a pivot table are now homes for Cube formulas. Figure 6-21 illustrates the cube functions.
[image: ]
FIGURE 6-21: These cells are now a series of Cube functions.
If your pivot table contains a report filter field, the dialog box shown in Figure 6-22 activates. This dialog box gives you the option of converting your filter drop-down selectors to Cube formulas. If you select this option, the drop-down selectors are removed, leaving a static formula.
[image: ]
FIGURE 6-22: Excel gives you the option of converting your report filter fields.
If you need to have your filter drop-down selectors intact so that you can continue to change the selections in the filter field interactively, be sure to leave the Convert Report Filters option unchecked when clicking the Convert button.
Now that the values you see are no longer part of a PivotTable object, you can insert rows and columns, you can add your own calculations, or you can combine the data with other formulas in your spreadsheet. For instance, in Figure 6-23, you can see I added two quarter total rows in the middle of the pivot data. I’m only able to do this because the pivot data is no longer a single PivotTable object. Instead, each cell is a cube formula that can be moved around like any other formula.
[image: ]
FIGURE 6-23: Cube functions give you the flexibility of restructuring your pivot data without losing the link to your data model.
The bottom line is that cube functions give you the flexibility to free your Power Pivot data from the confines of a pivot table and then use it in all sorts of ways by simply moving formulas around.


[bookmark: _Ref127768971]Diving into DAX
This module rounds your exploration of Power Pivot with a closer look at the DAX formula language. In Module 6, you use a bit of DAX when exploring the mechanics of adding your own calculated columns and calculated measures. Now that you know where DAX expressions fit in your Power Pivot data model, it’s time to take a dive into DAX.
In this module, you gain an understanding of the fundamentals of building DAX expressions and explore some commonly used DAX functions that will help you start your DAX journey.
EXERCISE FILES: Adventure Works.xlsx
DAX Language Fundamentals
Just like Excel functions, every DAX function outputs a result based on arguments you provide. The difference is that, in Excel, the arguments you use provide cell references such as A2:A10, and in DAX, you use table and column names. For instance, you could use SUM(A2:A10) to get the sum of the given Excel range. However, a similar DAX formula would look more like the following:
SUM(Sales[OrderQuantity])
Notice I’m using both the table name, Sales, and the column name, [OrderQuantity]. When referencing a column in a DAX function, you always include the table name. If the name of the table contains a space or special characters, use single quotes around the table name, like this:
SUM('Internet Sales'[OrderQuantity])
Let’s create a starting measure by following these steps:
1. Open the Adventure Works.xlsx file, select the Power Pivot tab on the Excel Ribbon, and choose Measures ➪ New Measure.
The Measure dialog box, shown in Figure 7-1, appears.
[image: ]
FIGURE 7-1: Creating a new measure that calculates Total Revenue.
2. In the Measure dialog box, set the following inputs:
· Table name: Choose the Sales table from the drop-down to ensure you can easily find your new measure within the PivotTable Field List.
· Measure name: Enter Total Revenue as the measure name.
· Formula: Enter the following DAX formula:
=SUM(Sales[SalesAmount])
· Formatting Options: Choose to format the results as a number with two decimal places and a thousand separator (refer to Figure 7-1).
3. Click OK to close the dialog box and create your measure.
At this point, you’ll need to create a pivot table to see your new measure in action.
4. Select the Power Pivot tab on the Excel Ribbon and choose the Manage command.
The Power Pivot window opens.
5. Choose Home ➪ PivotTable.
The Create PivotTable dialog box appears.
6. Choose the New Worksheet option and click OK.
7. Find the Total Revenue measure under the Sales table in the Pivot Table Field List and place a check mark next to it.
In Figure 7-2, calculated measures have a distinct icon in the Pivot Table Field List, making it easy to identify them.
[image: ]
FIGURE 7-2: The results of a calculated measure can be seen by adding it to a pivot table.
Repeat Steps 1 through 3 each time you want to add a new measure to your pivot table. Take a moment to create a new measure with the following inputs:
· Table name: Sales.
· Measure name: Total Units.
· Formula: Enter the following DAX formula: =SUM(Sales[OrderQuantity])
· Formatting Options: Choose to format the results as a whole number with zero decimal places and a thousand separator (see Figure 7-3).
[image: ] 
FIGURE 7-3: Creating a new measure that will calculate Total Units.
DAX allows you to use measures as arguments in other measures. Figure 7-4 illustrates the creation of a new measure called Revenue per Unit using the newly created measures:
=[Total Revenue]/[Total Units]
[image: ]
FIGURE 7-4: DAX allows you to use existing measure as arguments in other measures.
Measure names are encapsulated with brackets but not prefixed with a table name. This makes it easy to look at your formulas and distinguish measures from columns, because columns will have a table prefix while measure will not.
TIP
DAX is not a case-sensitive language, so it’s quite forgiving of uppercase and lowercase variances. DAX also ignores spaces so you can freely add carriage returns and extra spaces to improve the readability of your formulas.
Calculated measures on a pivot table will automatically recalculate when the underlying data is refreshed, when the pivot table is filtered with a slicer or a page filter, or when you change the structure of your pivot table. For instance, Figure 7-5 illustrates how the measures recalculate to show the appropriate results for the dimensions included in the pivot.
[image: ] 
FIGURE 7-5: DAX formulas recalculate to show appropriate results based on the dimensions included in the pivot table.
TIP
Another handy aspect of measures: They aren’t tied to a particular pivot table. Calculated measures are created in the Power Pivot data model, which means any pivot table that uses the internal data model as its source can make use of them.
Using DAX operators
The DAX language allows most of the standard operators you’re accustomed to using in Excel. In fact, you’ll notice I used a division operator in Figure 7-4. Table 7-1 lists the operators DAX allows when building your calculated measures.
[image: ]
Applying conditional logic in DAX
DAX enables conditional logic checks through the IF function. Like the IF function in Excel, the DAX version requires three arguments:
· The condition to test
· The value to return if the condition is true
· The value to return if the condition is false
For example, the following DAX formula will return Tier1 if the referenced measure, Total Revenue, is greater than 100,000; otherwise, Tier2 will be returned:
=IF([Total Revenue] > 100000, "Tier1", "Tier2")
It’s not uncommon to want to return a blank if a logic check fails. In these situations, you can employ the BLANK function. The following formula performs the same logic check as the previous formula, except it returns blank if the condition check fails:
=IF([Total Revenue] > 100000, "Tier1", BLANK())
You can go the other way and check if an expression is blank by using the ISBLANK function. ISBLANK returns either TRUE or FALSE. As an example, the following statement checks the Name column in the Customer table for a blank value. If the name is blank, the word Classifed is returned; otherwise, the customer name is returned.
=IF(ISBLANK(Customer[Name]), "Classified", Customer[Name])
You may find the need to use nested IF statements to apply multiple conditional checks in a single measure. DAX allows this in the same way Excel does in traditional worksheet formulas. This next formula illustrates a nested IF statement that returns a text label based on the conditional check of the [ListPrice] column in the Products table:
=IF(Products[ListPrice] > 1000, "A",
      IF(Products[ListPrice] > 500, "B",
            IF(Products[ListPrice] > 100, "C", "D")
      )
  )
REMEMBER
When building larger formulas such as the previous nested IF statement, it’s often helpful to make use of carriage returns and indentations to improve the readability of your formula. There is no formatting standard per se. The idea is to apply formatting that makes it easy for you to read, find errors, and edit as needed.
As useful as nested IF statements can be, they can get unwieldy and difficult to read when they require many nested layers. In such cases, consider using the SWITCH function to perform the same complex logic checks in a much cleaner way.
The following formula uses the cleaner SWITCH function to perform the same operation as the previous nested IF statement:
=SWITCH(
      TRUE(),
      Products[ListPrice] > 1000, "A",
      Products[ListPrice] > 500, "B",
      Products[ListPrice] > 100, "C",
      "D"
  )
Finally, DAX offers the IFERROR function to check for an error in an expression and then return a specified result if an error is encountered. The following example uses the IFERROR function to perform the classic check for zero before dividing two measures. Here, if the operation produces an error, a 0 is returned.
=IFERROR([Total Cost]/[Units Sold],0)
TIP
Although it doesn’t quite fit under the umbrella of conditional logic, it’s worth mentioning the DIVIDE function. The DIVIDE function provides a safe method of dividing two values without the need to check for potential errors due to a 0 in the denominator or any such nonsense. Simply enter the numerator, denominator, and value to return if an error occurs. Here’s a simple example where we’re dividing the [Total Cost] measure by the [Units Sold] measure:
=DIVIDE([Total Cost], [Units Sold],0)
Working with DAX aggregate functions
Aggregate functions live up to their namesake by calculating an aggregated value from all the records in each column. DAX offers the obligatory Fab Four of aggregate functions: SUM, AVERAGE, MIN, and MAX. These functions are used just the way you think they would be:
=SUM(Sales[Sales Amount])
=AVERAGE(Sales[Sales Amount])
=MIN(Sales[Sales Amount])
=MAX(Sales[Sales Amount])
There are, however, a few points to keep in mind when working with the SUM, AVERAGE, MIN, and MAX aggregate functions:
· They work only on columns that have a numeric or date data type.
· They ignore any text or blank values in the target column.
· They only aggregate rows after all filters and slicers have been applied to the source data. This means the results returned will be an aggregation of only the rows that met the complete filter context for the pivot table.
Another set of aggregate functions are those that return a count of some sort. These include the following:
· COUNT: Returns the count of non-blank numeric or date values in each column.
· COUNTA: Returns the count of all values in each column regardless of data type.
· COUNTBLANK: Returns the count of blank cells in each column.
· COUNTROWS: Returns the number of rows in a table.
· DISTINCTCOUNT: Returns the number of unique values in each column. If a value appears more than once, it will be counted only once. It’s worth noting that DISTINCTCOUNT will count blanks as another unique value, adding 1 to the count for BLANK.
Exploring iterator functions and row context
In some situations, you can’t rely on standard aggregation functions to return correct answers because the math needed only works when applied to individual rows. To fully understand what this means, take a gander at Figure 7-6.
[image: ]
FIGURE 7-6: I need a calculated measure that returns OrderQuantity * UnitPrice as the Realized Sales.
For each OrderNumber, I’m showing the [Sum of OrderQuantity] and the [Sum of UnitPrice]. I need a calculated measure to get [Realized Sales], which is simply [OrderQuantity]*[UnitPrice].
To save time, I’ve already created a [Realized Sales] measure, which you can review by selecting the Power Pivot tab on the Excel Ribbon and choosing Measures ➪ Manage Measures. Select the [Realized Sales] measure and then click the Edit button to see the dialog box shown in Figure 7-7. The formula being used is:
=Sum(Sales[OrderQuantity])*Sum(Sales[UnitPrice])
[image: ]
FIGURE 7-7: The [Realized Sales] measure uses a simple Sum aggregator function for each column.
As you can see in Figure 7-8, adding the [Realized Sales] measure to the pivot table shows promising results. The math makes sense for each row, and the results look accurate. However, you have to consider that this view is at the individual OrderNumber level (the most granular you can get with this data). Check out Figure 7-9 to see what happens when you replace [OrderNumber] with Region. The [Realize Sales] measure all becomes overly inflated.
[image: ]
FIGURE 7-8: The [Realized Sales] measure looks good at the granular OrderNumber level.
[image: ]
FIGURE 7-9: The math falls apart when you move to any granularity above OrderNumber (such as Region).
The reason for the breakdown is relatively clear if you stop and look at the results. For the Australia Region, you’re showing 13,345 units sold at a UnitPrice of 9,061,000 each. Well, that simply can’t be true. UnitPrice and OrderQuantity need to be multiplied at each individual-row level to get an accurate dollar per quantity before any aggregation is performed.
In other words, the measure needs to retain what is known as row context. When a measure retains row context, it sees and can interact with values for each row in which it performs its intended operation. Unfortunately, the SUM function has no row context, no insight into individual row data. SUM aggregates all the data in the specified column without capturing or noticing individual row data.
This is where you turn to iterator functions. Iterator functions, sometimes referred to as X-functions, are designed to iterate through and perform operations on each individual row record before aggregating results. The Fab Four aggregate functions have iterator versions of themselves: SUMX, AVERAGEX, MINX, and MAXX.
Iterator functions require two arguments: the table to iterate through and an expression to apply to each row. As an example, you can use the following formula (see Figure 7-10):
=SUMX(Sales, Sales[OrderQuantity] * Sales[UnitPrice])
[image: ]
FIGURE 7-10: Using the SUMX function enables the measure to retain row context when calculating the defined expression.
This formula tells the measure to iterate through the Sales table, run Sales[OrderQuantity] * Sales[UnitPrice] on each row, and then sum all the calculated products into an aggregated result.
Figure 7-11 demonstrates the difference between the original [Realized Sales] measure using SUM and the new [Realized PriceX] measure using SUMX.
[image: ]
FIGURE 7-11: The new [Realized PriceX] measure remains accurate now at every aggregation.
It’s worth mentioning that X-functions can be used like standard aggregate functions. For instance, the following formulas produce the same result with little to no difference in performance:
=SUMX(Sales, Sales[Sales Amount])
=SUM(Sales[Sales Amount]
The truth is, you can use iterator functions — SUMX, AVERAGEX, MINX, and so on — exclusively, without getting into too much trouble.
Understanding Filter Context
Filter context is a topic that eludes most analysts first starting with DAX. It’s a bit difficult to visualize without an example to work through, so let’s jump in with a simple scenario.
Imagine you’ve been given the Excel table shown in Figure 7-12 and asked to calculate the sum of Sales Amount for red bikes sold in the Northeast. Before you can calculate the sum, you need to apply the required filters by using the filter dropdowns to select the following:
· [Market]: ’Northeast’
·  [Business Segment]: ’Bikes’
·  [Color]: ’Red’
[image: ]
FIGURE 7-12: You need to calculate the sum of Sales Amount in cell E1, but only after applying filters.
In a sense, these filter selections change the state of your source data and establish a new context for your final calculation. The calculation result shown in Figure 7-13 is accurate for the specific state you put the data in by filtering.
[image: ]
FIGURE 7-13: The resulting answer is for the specific filter context applied.
When you boil away the complexities, filter context can generally be described as the state of your source data after you’ve applied all needed filters.
In the world of DAX, not only are calculations run against a filter context, but every cell in a pivot table has its own filter context. Figure 7-14 illustrates this with a pivot table containing the results of the [Total Revenue] calculated measure you created at the beginning of this module.
[image: ]
FIGURE 7-14: Each cell in a pivot table contains its own filter context.
You may hear the term query context thrown around DAX circles. Query context is an alternate term for filters applied via a pivot table as opposed to filters applied because of a DAX expression. Although Microsoft’s documentation acknowledges the term query context, most DAX developers don’t make a distinction between query context and filter context; they refer to all filters applied as the filter context.
Each individual cell in the pivot table represents a different run of the [Total Revenue] measure using that cell’s unique filter context. For instance, because cell E5 has a different filter context than cell E9 does, the [Total Revenue] measure had to run once for cell E5 and once for cell E9.
When the [Total Revenue] measure was being calculated for cell E5, the Power Pivot filtered the internal data model on the dimensions defined in that cell’s filter context. The relationships between each table automatically propagated the applied filtering from the one to the many sides of the one-to-many relationship.
Said another way, the filter context flowed in the direction of the arrows (see Figure 7-15). For instance, filtering the Products table on the [Category] column will automatically filter the Sales table because the arrow flows from Products to Sales. After all the necessary filtering is applied, the [Total Revenue] column ran the math on the data model in its filtered state and output the result to cell E5.
[image: ]
FIGURE 7-15: Filter context is propagated between tables via relationships in the direction of the arrows.
Getting context transitions with the CALCULATE function
The CALCULATE function is what is known as a context transition function. Context transition, in this capacity, essentially means overriding the current filter context and defining a new one. With the CALCULATE function, you can create DAX measures that supplement existing pivot data by including data in a completely different filter context.
The CALCULATE function requires, at a minimum, a measure expression that can be evaluated to a result. The following formula calculates the sum of Sales Amount but won’t do much in the way of defining a new filter context until you add conditions.
=CALCULATE(SUM(Sales[SalesAmount]))
Adding a condition to the CALCULATE function adds utility to your measure and establishes a new filter context. In this formula, you added a condition asking for the sum of sales for the Bikes product category.
=CALCULATE(
      SUM(Sales[SalesAmount]),
      Products[Category] = "Bikes"
  )
As always, you can use existing measures as the CALCULATE expression argument. Here, I’m using the [Total Revenue] measure created at the beginning of this module:
=CALCULATE(
      [Total Revenue],
      Products[Category] = "Bikes"
  )
I used the CALCULATE formula to create a new measure called [Bike Sales] and added it to a pivot table with the [Total Revenue] measure. The new [Bike Sales] measure has its own product category filter context and won’t respond to the category filter of the pivot table. Notice in Figure 7-16 that the figures for [Bikes Sales] don’t change in the pivot table even when a new Product Category is selected in the slicer.
[image: ]
FIGURE 7-16: The [Bike Sales] measure has its own product category context, so it doesn’t respond to the pivot slicer.
You can add as many conditions to the CALCULATE function as you’d like. The following formula adds to the filter context of [Bike Sales] by adding a condition for Fiscal Year:
=CALCULATE(
      SUM(Sales[SalesAmount]),
      Products[Category] = "Bikes",
      'Calendar'[Fiscal Year] = 2020
  )


Adding flexibility with the FILTER function
The FILTER function returns a table of values that meet a specified condition. For example, the following expression returns a table of Products where the [Dealer-Price] is less than the [StandardCost].
=FILTER(Products,
      DIVIDE(Products[DealerPrice],Products[StandardCost])<1
  )
The FILTER function works like an iterator function, iterating through the rows of the specified table (Products, in this case) and evaluating whether each row meets the specified condition. Rows that meet the condition are output in the table result.
The resulting table can be used in conjunction with other DAX functions to create a targeted filter context based on your defined conditions. In this case, you can use the previous FILTER expression with CALCULATE. The following formula does just that.
First, the FILTER function creates a table of Products where the [DealerPrice] is less than the [StandardCost]. The CALCULATE function then uses the resulting table to get the sum of sales for all the products in the FILTER table results.
=CALCULATE(SUM(Sales[SalesAmount]),
          FILTER(Products,
          DIVIDE(Products[DealerPrice],Products[StandardCost])<1
      )
  )
In Figure 7-17, you can see I used the CALCULATE and FILTER formula to create a new measure called LowProfitSales. Then I added it to a pivot table.
[image: ]
FIGURE 7-17: Using CALCULATE and FILTER together to establish a new filter context.
With some basic formula building, you’ve been able to exert a good bit of control over new measures and how they respond to the filter context of your reporting.
Where to Go from Here
DAX is a huge topic that goes well beyond the scope of this course. Hopefully, the basic concepts in this module will inspire you to pursue DAX a little further. Yes, DAX is a journey of time and practice, but the good news is that there are plenty of resources out there that can help you on your path. Here are some resources that you can leverage as you continue delving into DAX:
· Chris Webb’s BI Blog (https://blog.crossjoin.co.uk/category/dax): Chris Webb’s blog is focused on helping people make sense of their business data with Power Query and Power Pivot. With several years’ worth of articles, Chris’s blog is a rich source for DAX concepts.
· Excelerator BI (https://exceleratorbi.com.au): Matt Allington’s website is a rich vein for articles on the latest Power BI trends. Check it out for a wide array of DAX-related tutorials.
· P3 Adaptive (https://p3adaptive.com): Rob Collie has been in the DAX world since its arrival in 2010. He has a knack for explaining the ins and outs of DAX from the perspective of Excel analysts. Rob’s blog offers hundreds of excellent articles and tutorials.
· RADACAD (https://radacad.com): RADACAD is a group founded by Reza Rad. Reza and his team offer training to those who are looking to build their DAX muscles. RADACAD also publishes a free newsletter every month, keeping readers up to date with all the new changes in the Power Pivot realm.
· SQLB: How to Learn DAX (www.sqlbi.com/guides/dax): Alberto Ferrari and Marco Russo have helped countless Excel analysts make the leap into DAX. With a generous number of articles and examples, their website is a must for anyone learning DAX.


[bookmark: _Ref127768975]Introducing Power Query
In information management, the term ETL (Extract, Transform, Load) refers to the three separate functions typically required to integrate disparate data sources: extract, transform, and load. The extraction function refers to the reading of data from a specified source and extracting a desired subset of data. The transformation function refers to the cleaning, shaping, and aggregating of data to convert it to the desired structure. The loading function refers to the actual importing or writing of the resulting data to a target location.
Excel analysts have been manually performing ETL processes for years — although they rarely call it ETL. Every day, millions of Excel users manually pull data from a source location, manipulate that data, and integrate it into their reporting. This process requires lots of manual effort.
Power Query enhances the ETL experience by offering an intuitive mechanism to extract data from a wide variety of sources, perform complex transformations on that data, and then load the data into a workbook or the Internal Data Model.
In this module, you explore the basics of the Power Query Add-in. You also get a glimpse of how it can help you save time and automate the steps needed to ensure that clean data is imported into your reporting models.
Power Query Basics
In this section, I walk you through a simple example of using Power Query. Imagine that you need to import Microsoft Corporation stock prices from the past 30 days by using Yahoo! Finance. For this scenario, you need to perform a web query to pull the data you need from Yahoo! Finance.
Starting the query
To start the query, follow these steps:
1. In Excel, select the Get Data command in the Get & Transform Data group on the Data tab and then choose From Other Sources ➪ From Web (see Figure 8-1).
[image: ] FIGURE 8-1: Starting a Power Query web query.
2. In the dialog box that appears, enter the URL for the data you need, as shown in Figure 8-2.
[image: ]
FIGURE 8-2: Enter the target URL containing the data you need.
In this example, you type http://finance.yahoo.com/q/hp?s=MSFT. 
After a bit of gyrating, the Navigator dialog box shown in Figure 8-3 appears. You can select the data source that you want to extract. Click on each table to see a preview of the data.
3. In this case, Table 0 holds the historical stock data you need, so click Table 0 in the list box on the left and then click the Transform Data button.
You may have noticed that the Navigator dialog box, shown in Figure 8-3, offers a Load button (next to the Transform Data button). You can use this button to skip any editing and import your targeted data as is. If you’re sure that you won’t need to transform or shape your data in any way, click the Load button to import the data directly into the data model or a spreadsheet in your workbook.
[image: ]
FIGURE 8-3: Select the correct data source and then click the Transform Data button.
WARNING
Excel has another From Web command button, on the Data tab in the Get External Data group. This unfortunate duplicate command is the legacy web-scraping capability found in all Excel versions since Excel 2000. The Power Query version of the From Web command (found under the Get Data drop-down) goes beyond simple web scraping. Power Query is able to pull data from advanced web pages, and it can manipulate the data. Make sure you’re using the correct feature when pulling data from the web.
When you click the Transform Data button, Power Query activates a new Query Editor window, which contains its own Ribbon and a preview pane that shows a preview of the data (see Figure 8-4). You can apply certain actions to shape, clean, and transform the data before importing.
[image: ]
FIGURE 8-4: The Query Editor window allows you to shape, clean, and transform data.
The idea is to work with each column shown in the Query Editor, applying the necessary actions that will give you the data and structure you need. You can dive deeper into column actions later in this module. For now, continue toward the goal of getting the last 30 days of stock prices for Microsoft Corporation.
4. Click the High field and then hold down the Ctrl key on your keyboard while you click the Low field and the Close fields.
5. Right-click and choose Change Type ➪ Currency, as shown in Figure 8-5.
[image: ]
FIGURE 8-5: Change the data type of the High, Low, and Close fields to currency format.

Alternatively, you can hold down the Ctrl key on the keyboard, select the columns you want to keep, right-click any selected column, and then choose Remove Other Columns (see Figure 8-6).
[image: ]
FIGURE 8-6: Select the columns you want to keep, and then select Remove Other Columns to get rid of them.
You may notice that some of the rows show the word Error. These are rows that contained text values that could not be converted.
This ensures that the Date field is formatted as a proper date. Power Query will ask if you want to replace the current step or add a new step.
6. Choose Add a New Step.
7. Remove all unnecessary columns by right clicking each one and selecting Remove.
(Besides the Date field, the only other columns you need are the High, Low,
and Close fields.)
8. Remove the Error rows by right clicking the High field and selecting Remove Errors, as shown in Figure 8-7.
[image: ]
FIGURE 8-7: Removing errors caused by text values that could not be converted to currency.
9. After all the errors are removed, right-click the Date field and select the Duplicate Column option.
A new column (named Date -Copy) is added to the preview.
10. Right-click the newly added column, select the Rename option, and then rename the column Week Of.
11. Right-click the Week Of column you just created and choose Transform ➪ Week ➪ Start of Week, as shown in Figure 8-8.
[image: ]
FIGURE 8-8: The Power Query Editor can be used to apply transformation actions such as displaying the start of the week for a given date.
Excel transforms the date to display the start of the week for a given date.
12. When you’ve finished configuring your Power Query feed, click the Close & Load drop-down found on the Home tab of the Power Query Editor to reveal the two options shown in Figure 8-9:
[image: ]
FIGURE 8-9: The Import Data dialog box gives you more control over how the results of queries are used.
· Close & Load: Saves your query and outputs the results to a new worksheet in your workbook as an Excel table. You can choose the Close & Load To option to activate the Import Data dialog box (see Figure 8-9). There, you can choose to output the results to a specific worksheet or to the internal data model.
· Close & Load To: Activates the Import Data dialog box (see Figure 8-9). There, you can choose to output the results to a specific worksheet. The Import Data dialog box also enables you to save the query as a query connection only, which means you’ll be able to use the query in various processes without needing to output the results anywhere.
13. Select the New Worksheet option button to output your results as a table on a new worksheet in the active workbook.
At this point, you have a table like the one shown in Figure 8-10, which can be used to produce the pivot table you need.
[image: ]
FIGURE 8-10: Your final query pulled from the internet: transformed, put into an Excel table, and ready to use in a pivot table.
Take a moment to appreciate what Power Query allowed you to do just now. With a few clicks, you searched the internet, found some base data, shaped the data to keep only the columns you needed, and even manipulated that data to add an extra Week Of dimension to the base data. This is what Power Query is about: enabling you to easily extract, filter, and reshape data without the need for any programmatic coding skills.
TIP
You can get back to the Power Query Editor window for any query by activating the Queries & Connections task pane. On the Excel Ribbon, choose Data ➪ Queries & Connections. From here, you can simply right-click a query and select Edit.

Understanding query steps
[image: ]Power Query uses its own formula language (known as the “M” language) to codify your queries. As with macro recording, each action you take when working with Power Query results in a line of code being written into a query step. Query steps are embedded M code that allow your actions to be repeated each time you refresh your Power Query data.
To explore this concept, open the Power Query Editor for the table you just created. Right-click anywhere in the table shown in Figure 8-10 and choose Table ➪ Edit Query. You can see the query steps for your queries in the Query Settings pane (see Figure 8-11).

FIGURE 8-11: You can view and manage query steps in the Applied Steps section of the Query
Settings pane.
Each query step represents an action you took to get to a data table. You can click on any step to see the underlying M code in the Power Query formula bar. For example, clicking the step called Removed Errors reveals the code for that step in the formula bar.
TIP
If you don’t see the Query Settings pane, click the Query Settings command on the View tab of the Power Query Editor Ribbon. The View tab also contains the Formula Bar check box, allowing you to expose Formula bar that displays the M syntax for each given step.
When you click on a query step, the data shown in the preview pane shows you what the data looked like up to and including the step you clicked. For example, in Figure 8-11, clicking the step before the Removed Other Columns step lets you see what the data looked like before you removed the non-essential columns.
[image: ]
FIGURE 8-12: Right-click on any query step to edit, rename, delete, or move the step.
You can right-click on any step to see a menu of options for managing your query steps. Figure 8-12 illustrates the following options:
· Edit Settings: Edit the arguments or parameters that defines the selected step.
· Rename: Give the selected step a meaningful name.
· Delete: Remove the selected step. Be aware that removing a step can cause errors if subsequent steps depend on the deleted step.
· Delete Until End: Remove the selected step and all following steps.
· Insert Step After: Insert a step after the selected step.
· Move Up: Move the selected step up in the order of steps.
· Move Down: Move the selected step down in the order of steps.
· Extract Previous: Create a new query using the steps prior to the selected step. This feature is covered in Module 11.
View the Advanced Query Editor
Power Query gives you the option to view and edit a query’s embedded M code directly. While in the Power Query Editor, click the View tab on the Ribbon and select Advanced Editor. The Advanced Editor dialog box is little more than a space for you to type your own M code. Advanced users can use the M language to extend the capabilities of Power Query by directly coding their own steps in the Advanced Editor. I touch on the M language in Module 12 of this course.
Refreshing Power Query data
Power Query data is in no way connected to the source data used to extract it. A Power Query data table is merely a snapshot. In other words, as the source data changes, Power Query doesn’t automatically keep up with the changes; you need to intentionally refresh your query.
If you chose to load your Power Query results to an Excel table in the existing workbook, you can manually refresh by right-clicking on the table and selecting the Refresh option.
If you chose to load your Power Query data to the internal data model, you need to choose Data ➪ Queries & Connections and then right-click the target query and select the Refresh option.
To get a bit more automated with the refreshing of queries, you can configure your data sources to automatically refresh the Power Query data. To do so, follow these steps:
1. Select the Data tab in the Excel Ribbon and click the Queries & Connections command.
The Queries & Connections task pane appears.
2. Right-click the Power Query data connection you want to refresh and then select the Properties option.
The Properties dialog box opens.
3. Select the Usage tab.
4. Set the options to refresh the chosen data connection:
· Refresh Every X Minutes: Tells Excel to automatically refresh the chosen data every specified number of minutes. Excel refreshes all tables associated with that connection.
· Refresh Data When Opening the File: Tells Excel to automatically refresh the chosen data connection after opening the workbook. Excel refreshes all tables associated with that connection as soon as the workbook is opened.
These refresh options are useful when you want to ensure that your customers are working with the latest data. Of course, setting these options does not preclude the ability to manually refresh the data using the Refresh command on the Home tab.
Managing existing queries
As you add various queries to a workbook, you need a way to manage them. Excel accommodates this need by offering the Queries & Connections task pane, which enables you to edit, duplicate, refresh, and generally manage all existing queries in the workbook.
Open the Queries & Connections task pane by selecting the Show Queries & Connections command on the Data tab of the Excel Ribbon. Find the query you want to work with, and right-click it to take any one of the actions described in the following list (see Figure 8-13):
· Edit: Open the Query Editor, where you can modify the query steps.
· Delete: Delete the selected query.
· Refresh: Refresh the data in the selected query.
· Load To: Activate the Import Data dialog box, where you can redefine where the selected query’s results are used.
· Duplicate: Create a copy of the query.
· Reference: Create a new query that references the output of the original query.
· Merge: Merge the selected query with another query in the workbook by matching specified columns.
· Append: Append the results of another query in the workbook to the selected query.
· Send to Data Catalog: Publish and share the selected query via a Microsoft Power BI server that your IT department sets up and manages.
· Export Connection File: Save an Office Data Connection (.odc) file with the connection credentials for the query’s source data.
· Move to Group: Move the selected query into a logical group that you create for better organization.
· Move Up: Move the selected query up in the Queries & Connections pane.
· Move Down: Move the selected query down in the Queries & Connections pane.
· Show the Peek: Show a preview of the query results for the selected query.
· Properties: Rename the query and add a friendly description.
[image: ]
FIGURE 8-13: Right-click any query in the Queries & Connections pane to see the available management options.
The Queries & Connections pane is especially useful when your workbook contains several queries. Think of it as a kind of table of contents that allows you to easily find and interact with the queries in your workbook.
Understanding Column-Level Actions
Right clicking a column in the Power Query Editor activates a shortcut menu that shows a full list of the actions you can take. You can also apply certain actions to multiple columns at one time by selecting two or more columns before right-clicking.
Table 8-1 explains the commands you see when right-clicking a column within the Power Query Editor.
[image: ]
[image: ]
TIP
All column-level actions available in Power Query are also available on the Query Editor Ribbon, so you can either choose the convenience of right-clicking to quickly select an action or use the more visual Ribbon menu. A few useful column-level actions are found only on the Ribbon, as described in Table 8-1.
Understanding Table Actions
While you’re in the Query Editor, Power Query lets you apply certain actions to an entire data table. You can see the available table-level actions by clicking the Table Actions icon, shown in Figure 8-14.
[image: ]
FIGURE 8-14: Click the Table Actions icon in the upper-left corner of the Query Editor Preview pane to see the table-level actions you can use to transform the data.
Table 8-2 lists the more commonly used table-level actions and describes the primary purpose of each one.
TIP
All table-level actions available in Power Query are also available on the Power Query Editor Ribbon, so you can either choose the convenience of right-clicking to quickly select an action or use the more visual Ribbon menu.
[image: ]


[bookmark: _Ref127768979]Power Query Connection Types
Microsoft has invested a great deal of time and resources in ensuring that Power Query can connect to a wide array of data sources. Whether you need to pull data from an external website, a text file, a database system, Facebook, or a web service, Power Query can accommodate most, if not all, of your source data needs.
You can see all available connection types by clicking on the Get Data drop-down arrow on the Data tab of the Excel Ribbon. Power Query offers the ability to pull from a wide array of data sources, as described in this list:
· From File: Pulls data from specified Excel files, text files, CSV files, XML files, or folders
· From Database: Pulls data from a database such as Microsoft Access, SQL Server, or SQL Server Analysis Services
· From Azure: Pulls data from Microsoft’s Azure Cloud service
· From PowerBI: Pulls data from PowerBI data sets made available through your organization’s PowerBI service.
· From Online Services: Pulls data from online software-as-a-service (SaaS) applications such as Salesforce.com, Microsoft Dynamics 365, and SharePoint lists
· From Other Sources: Pulls data from a wide array of internet, cloud, and other ODBC data sources
In this module, I help you explore the various connection types that can be leveraged to import external data.
Importing Data from Files
Organizational data is often stored in files such as text files, CSV files, and even other Excel workbooks. It’s not uncommon to use these kinds of files as data sources for data analysis. Power Query offers several connection types that enable the importing of data from external files.
TIP
The files you import don’t necessarily have to be on your own PC. You can import files on network drives as well as in cloud repositories such as Google Drive and Microsoft OneDrive.
Getting data from Excel workbooks
You can import data from other Excel workbooks by selecting Data ➪ Get Data ➪ From File ➪ From Workbook from the Excel Ribbon.
Excel opens the Import Data dialog box where you can browse for the Excel file you want to work with. Note that you can import any kind of Excel file, including macro-enabled workbooks and template workbooks.
After you’ve selected a file, the Navigator pane activates (see Figure 9-1), showing you all the data sources available in the workbook.
The idea here is to select the data source you want and then either load or transform the data using the buttons at the bottom of the Navigator pane. Click the Load button to skip any editing and import your targeted data as is. Click the Transform Data button if you want to transform or shape the data before completing the import.

[image: ]
FIGURE 9-1: Select the data sources you want to work with, and then click the Load button.
In terms of Excel workbooks, a data source is either a worksheet or a defined named range. The icons next to each data source let you distinguish which sources are worksheets and which are named ranges. In Figure 9-1, the source named MyNamedRange is a defined named range, and the source named National Parks is a worksheet.
You can import multiple sources at a time by selecting the Select Multiple Items check box and then placing a check mark next to each worksheet and named range that you want imported.
TIP
Power Query won’t bring in charts, pivot tables, shapes, VBA code, or any other objects that may exist within a workbook. Power Query simply imports the data found in the used cell ranges of the workbook.
Getting data from CSV and text files
Text files are commonly used to store and distribute data because of their inherent ability to hold many thousands of bytes of data without having an inflated file size. Text files can do this by foregoing all the fancy formatting, leaving only the text.
A comma-separated value (CSV) file is a kind of text file that contains commas to delimit (separate) values into columns of data.
To import a text file, select Data ➪ Get Data ➪ From File ➪ From Text/CSV on the Excel Ribbon. Excel opens the Import Data dialog box, where you can browse for, and select, a text or CSV file.
[image: ] 
FIGURE 9-2: Preview the data and use the option dropdown menus to tell Power Query how to import the data.
Power Query opens the dialog box shown in Figure 9-2. Here, you can preview the contents and specify how the file should be imported. Note the drop-down options at the top of the dialog:
· File Origin: Define what encoding standards to use. This option is useful when handling data that comes from different regions of the world.
· Delimiter: Specify how the contents are delimited (separated). Some text files are tab delimited, meaning they contain tab characters that separate text values into columns of data. Other text files are comma delimited, while others still are delimited by another character such as a space or a colon. Use the Delimiter drop-down to tell Power Query which delimiter to look for when separating values into columns.
· Data Type Detection: When you import text files, Power Query will use the first 200 rows to guess the data types for each of the columns in the data. For instance, if the first 200 rows of a particular column are made up of numbers, Power Query will automatically change the data type of that column to numeric after importing the file. The Data Type Detection drop-down allows you to tell Power Query to analyse the entire file (as opposed to the first 200 rows) when guessing the data types. You also have the option of telling Power Query not to change any data types.
Click the Load button to import the data directly into your workbook. Click the Transform Data button to bring the data source into the Query Editor, where you can apply your edits and then click the Close & Load command to complete the import.
Getting data from PDF files
Power Query now offers the ability to import data from PDFs. You can access PDF data by going to the Excel Ribbon and choosing Data ➪ Get Data ➪ From File ➪ From PDF. The Import Data dialog box appears, allowing you to browse for your target PDF. After a few seconds, the Navigator dialog box, shown in Figure 9-3, opens, showing you the available tables and pages found in your chosen file.
[image: ]
FIGURE 9-3: The available tables and pages in the PDF are shown in the Navigator dialog box.
Notice that both structured tables and pages are shown, allowing you the option of importing a specific table or an entire page from the PDF. Simply click the item you want to import and then click the Load button to import directly into your workbook or click the Transform Data button to clean the source data before importing.
You can even import multiple items from your PDFs by placing a selecting the Select Multiple Items check box (see Figure 9-3).
TIP
Rarely does the data from a PDF come in clean. You’ll almost always need to click the Transform Data button to clean up column names, remove empty spaces, and generally remove unwanted data elements.
Getting data from folders
Power Query can use the Windows file system as a data source, enabling you to import a list of folder contents for a specified directory. This comes in handy when you need to create a list of all the files in a particular folder.
From the Excel Ribbon, select Data ➪ Get Data ➪ From File ➪ From Folder. After you browse for the folder (directory) you want to use, the dialog box shown in Figure 9-4 opens.
[image: ]
FIGURE 9-4: Data preview of the files in the target folder.
The incoming data contains a row for each file contained inside the folder, including any files in subfolders. Click the Load button to import the data directly into your workbook. Click the Transform Data button to bring data source into the Query Editor.
In the Power Query Editor (see Figure 9-5), you’ll see the imported table details the key attributes for each file, such as filename, file extension, date created, and date modified. You can even click the Expand icon in the Attributes field and choose to display some of the more advanced attributes for each file.
After you have all the attributes you need, you can click the Close & Load command on the Home tab to complete the import.
TIP
The files that are listed include all files contained in subfolders inside the folder you specified. Unfortunately, the resulting output is not hyperlinked back to the actual folder contents. In other words, you can’t open the individual files from the query table.
[image: ]
FIGURE 9-5: Use the Power Query Editor to add more file attributes to the import.
Importing Data from Database Systems
In smart organizations, the task of data management is not performed by Excel; rather, it’s performed primarily by database systems such as Microsoft Access and SQL Server. Databases like these not only store millions of rows of data but also ensure data integrity and allow for the rapid search and retrieval of data by way of queries and views.
A connection for every database type 
Power Query offers options to connect to a wide array of database types. Microsoft has been keen to add connection types for as many commonly used databases as it can.
[image: ]Relational and OLAP databases
Choose Data ➪ Get Data ➪ From Database and you see the list of databases shown in Figure 9-6. Power Query can connect to virtually any database commonly used today: SQL Server, Microsoft Access, Oracle, MySQL, and so forth.










FIGURE 9-6: Power Query offers connection types for many of the popular database systems now in use.
Azure databases
[image: ]If your organization has a Microsoft Azure cloud database or a subscription to Microsoft Azure Marketplace, an entire set of connection types is designed to import data from Azure databases (see Figure 9-7). You can get to these connection types by choosing Data ➪ Get Data ➪ From Azure.





FIGURE 9-7: Tools for connection to Microsoft Azure cloud database services.

ODBC connections to nonstandard databases
If you’re using a unique, nonstandard database system that isn’t listed under From Database (refer to Figure 9-6) or From Azure (refer to Figure 9-7), not to worry: If your database system can be connected to via an ODBC connection string, Power Query can connect to it.
[image: ]Choose Data ➪ Get Data ➪ From Other Data Sources to see a list of other connection types. Click the From ODBC option shown in Figure 9-8 to start a connection to your unique database via an ODBC connection string.











FIGURE 9-8: Starting an ODBC connection.
Getting data from other data systems
In addition to ODBC, Figure 9-8 illustrates other kinds of data systems that can be leveraged by Power Query.
Some of these data systems (SharePoint, Microsoft Exchange) are popular systems that are used in many organizations to store data and manage emails. Other systems, such as OData Feeds and Hadoop, are less-common services used to work with very large volumes of data. These are often mentioned in conversations about big data. And of course, the From Web option (demonstrated in Module 8) is an integral connection type for any analyst who leverages data from the internet.
Clicking any of these connections opens a set of dialog boxes customized for the selected connection. These dialog boxes ask for the basic parameters that Power Query needs to connect to the specified data source; parameters such as file path, URL, server name, and credentials.
Each connection type requires its own, unique set of parameters, so each of their dialog boxes is different. Luckily, Power Query rarely needs more than a handful of parameters to connect to any single data source, so the dialog boxes are relatively intuitive and hassle-free.


Walk-through: Getting data from a database
It would be redundant to walk through the process of connection to every type of database available. However, it would be useful to walk through the basic steps of connecting a database.
Here are the steps for connecting to one of the more ubiquitous database systems — Microsoft Access:
1. Choose Data ➪ Get Data ➪ From Database ➪ From Microsoft Access Database.
2. Browse for your target database. You can use the Facility Services.accdb database, found in the sample files for this course.
After Power Query connects to the database, the Navigator pane, shown in Figure 9-9, activates. There, you see all database objects available to you, including tables and views (or queries, in Access lingo).
[image: ]
FIGURE 9-9: Select the view you want imported, and then click the Load button.
3. Click the Sales_By_Employee view.
The Navigator pane displays a preview of the Sales_By_Employee data. If you want to transform or shape this data, click the Transform Data button. In this case, the data looks fine as is.
4. Click the Load button to complete the import
After a bit of processing, Power Query loads the data to a new Excel worksheet and adds the new query to the Workbook Queries pane, as shown in Figure 9-10.
REMEMBER
You can select multiple tables and views by selecting the Select Multiple Items check box and then placing a check mark next to each database object you want imported.
[image: ] FIGURE 9-10: The final imported database data.
TIP
The icon next to each database object distinguishes whether that object is a table or a view. Views have an icon that looks like two overlapping grids. See the icon for the Sales_By_Employee view, shown in Figure 9-9, to get the idea.
It’s a best practice to use views whenever possible. Views are often cleaner data sets because they’re already optimized to include only the columns and data that are necessary. (This improves query performance and helps minimize the workbook’s file size.) In addition, you don’t need to have an intimate knowledge of the database architecture. Someone with that knowledge has already done the work for you — joined the correct tables, applied the appropriate business rules, and
optimized output, for example.

Managing Data Source Settings
Every time you connect to any web-based data source or data source that requires some level of credentials, Power Query caches (stores) the settings for that data source.
Suppose that you connect to a SQL Server database, enter all your credentials, and import the data you need. Once the connection is succeeded, Power Query caches information about that connection in a file located on your local PC. It includes the connection string, username, password, and privacy settings, for example.
The purpose of all this caching is so that you don’t have to re-enter credentials every time you need to refresh your queries. That’s nifty, but what happens when your credentials are changed? Well, the short answer is those queries will fail until the data source settings are updated.
You can edit data source settings by activating the Data Source Settings dialog box. To do so, choose Data ➪ Get Data ➪ Data Source Settings. The Data Source Settings dialog box, shown in Figure 9-11, contains a list of all credentials-based data sources previously used in queries. Select the data source
you need to change, and then click the Edit Permissions button.

[image: ]
FIGURE 9-11: Edit a data source by selecting it and clicking the Edit Permissions button.
Another dialog box opens — this time, specific to the data source you selected (see Figure 9-12). This dialog box enables you to edit credentials as well as other data privacy settings.
[image: ]
FIGURE 9-12: Edit a data source by selecting it and clicking the Transform Data button.

Click the Edit button to make changes to the credentials for the data source. The credentials editing screen will differ based on the data source you’re working with, but again, the input dialog boxes are relatively intuitive and easy to update.
Power Query caches data source settings in a file located on your local PC. Even though you may have deleted a particular query, the data source setting is retained for possible future use. This can lead to a cluttered list of old and current data sources. You can clean out old items by selecting the data source in the Data Source Settings dialog box and clicking the Clear Permissions button.
Data Profiling with Power Query
When importing a new data source, it’s often useful to understand the intricacies and pitfalls of the data before you start working with it. For instance, how many records are empty? How many unique values are there in each column? What are the minimum and maximum values? Power Query’s data profiling capabilities allow you to know your data and identify potential issues before using it.
In this section, I fill you in on some of the ways you can leverage data profiling in Power Query to get a better understanding of your data and address problem areas before they become a problem later in your reporting processes.
Data Profiling options
While in the Power Query Editor window, click the View tab to see options for data profiling in the Data View Group (see Figure 9-13).
[image: ]
FIGURE 9-13: Data Profiling options are found in the Data View group under the View tab.
Take a moment to review the purpose of each option.
· Monospaced: Converts the font in the Data Preview window to monospaced, making it easier to see differences in data.
· Show Whitespace: Useful for calling out inline carriage returns and other invisible space characters.
· Column Quality: Displays the percentage of column values that are empty, the percentage that are rendered as errors, and the percentage that are considered valid values. This option is the most powerful in terms of providing an at-a-glance view of your data.
· Column Distribution: Provides a histogram visual displaying how many distinct and unique records are found in the values in each of the columns.
· Column Profile: Provides a useful way to see detailed descriptive statistics on a chosen column, such as the number of records with a 0 value, the minimum value in the column, the maximum value, the average value, and the standard deviation of all values in the column.
Be aware that the data profiler in Power Query, by default, only profiles the first 1,000 records. You can tell the profile to use the entire data set to get a more complete picture of your data. Figure 9-14 illustrates how to change the scope of data profiling to the entire data set.
[image: ]
FIGURE 9-14: Choose Column Profiling Based on Entire Data Set to get a more complete picture of your data.

Data Profiling quick actions
When you select the Column Quality action, you’ll see a set of figures that represent the percentage of values in a column that are valid, contain empty records, and are rendered as an error. Hovering over these percentages exposes a pop-up containing an ellipsis (see Figure 9-15). Clicking the ellipsis activates a shortcut menu allowing you to apply quick actions such as Remove Errors, Remove Empty,
and Remove Duplicates.
When selecting the Column profile action, you’ll two new panes below the data preview window: Column Statistics and Value Distribution. As you can see in Figure 9-16, the Value Distribution pane contains a histogram visual displaying the distribution of values. Right clicking any of the bars reveals a quick action menu allowing you to apply transformations based on the type of data in that column. In this case, right clicking the bar for zero reveals the options for Numbers Filter and Replace Values.
TIP
The quick actions exposed via the data profiler are simply an easy way to find and apply needed transformations. They aren’t any different from those found in the Power Query Editor Ribbon and those exposed by simply right clicking a value in the data preview window.

[image: ]
FIGURE 9-15: Exposing the quick actions for a column using the data column quality ellipsis.
[image: ]
FIGURE 9-16: Right clicking a column profile histogram bar exposes the quick actions for the associated value.
[bookmark: _Ref127768983]Transforming Your Way to Better Data
Wouldn’t it be great if all the data sources you work with were clean and ready to use? Unfortunately, that’s not the case — you often receive data that is unpolished, or raw. That is to say, the data may have duplicates or blank fields or inconsistent text, for example.
Data transformation generally entails certain actions that are meant to “clean” your data — actions such as establishing a table structure, removing duplicates, cleaning text, removing blanks, and even adding your own calculations.
In this module, I introduce you to some of the tools and techniques in Power Query that make it easy for you to clean and massage your data.
EXERCISE FILES: LeadList.txt
Completing Common Transformation Tasks
Many of the unpolished data sets that come to you will require various types of transformation actions. This section covers some of the more common transformation tasks you will have to perform, such as removing duplicates, finding and replacing text, filling empty cells, and splitting or joining text values.
Removing duplicate records 
Duplicate records are absolute analysis killers. The effect that duplicates records have on your analysis can be far-reaching, corrupting almost every metric, summary, and analytical assessment you produce. It is for this reason that finding and removing duplicate records should be your priority when you receive a new data set.
Before you begin examining the data set to find and remove duplicate records, consider how you define a duplicate record. Look at the table shown in Figure 10-1, where you see 11 records. Of the 11 records, how many are duplicates?
[image: ]
FIGURE 10-1: Does this table have duplicate records? It depends on how you define them.
If you were to define a duplicate record in Figure 10-1 as a duplication of only the SicCode, you would find 10 duplicate records. That is, of the 11 records shown, 1 record has a unique SicCode, and the other 10 are duplications. Now, if you were to expand your definition of a duplicate record to a duplication of both SicCode and PostalCode, you would find only two duplicates: the duplication of postal codes 77032 and 77040. Finally, if you were to define a duplicate record as a duplication of the unique value of SicCode, PostalCode, and CompanyNumber, you would find no duplicates.
This example shows that having two records with the same value in a column doesn’t necessarily mean that you have a duplicate record. It’s up to you to determine which field or combination of fields best defines a unique record in the data set.
After you have a clear idea of which field or fields best make up a unique record in the table, you can remove duplicates easily by using the Remove Duplicates command.
Figure 10-2 illustrates the removal of duplicate rows based on three columns. Note the importance of selecting the columns that define a duplicate. In this case, the combination of Address, CompanyNumber, and CompanyName defines a duplicate record. You select these columns before clicking the Remove Duplicates command on the Home tab of the Power Query ribbon.
[image: ]
FIGURE 10-2: Removing duplicate records.
WARNING
The Remove Duplicates command essentially looks for distinct values in the columns you selected and then removes all records necessary to end up with a unique list of values. If you select only one column before giving the Remove Duplicates command, Power Query uses only that one column you selected to determine the unique list of values, which undoubtedly removes too many records — records that aren’t truly duplicates. For this reason, be sure to select all columns that define a duplicate.
If you make a mistake and remove duplicates based on the wrong set of columns, don’t worry: You can always use the Query Settings pane to delete that step. Right-click on the Removed Duplicates step and select Delete (see Figure 10-3). Alternatively, you can click the X next to the Remove Duplicates step.
TIP
If you don’t see the Query Settings pane in the Power Query Editor window, choose View ➪ Query Settings to activate the Query Settings pane.

[image: ]
FIGURE 10-3: Undo the removal of records by deleting the Removed Duplicates step.
Filling in blank fields
There are two kinds of blank values: null and empty string. A null is essentially a numerical value of nothing, whereas an empty string is equivalent to entering two quotation marks ("") in a cell.
Blank fields aren’t necessarily a bad thing, but having an excessive number of blanks in your data can lead to unexpected problems when analysing it.
Your job is to decide whether to leave the blanks in the data set or fill them with actual values. Consider the following best practices:
· Use blanks sparingly. Working with a data set is a much less daunting task when you don’t have to test continually for blank values.
· Use alternatives whenever possible. Represent missing values with some logical missing-value code whenever possible.
· Never use null values in number fields. Use zero instead of null in a currency or a number field that will be used in calculations.
Replacing null values
Power Query shows the word null for any null value in your data. Replacing the null values is as simple as selecting the column or columns you want to fix and then selecting the Replace Values command.
The Replace Values dialog box shown in Figure 10-4 appears. The key here is to enter the word null as the Value to Find value. You can then enter the value that you want to use instead. In this case, you can enter 0 as the Replace With value.
[image: ]
FIGURE 10-4: Replacing null with 0.
Filling in empty strings
To follow best practices, represent missing values in a field with some logical value code whenever possible. For example, in Figure 10-5, I want to tag with the word Undefined any record with a missing title in the ContactTitle field. 
[image: ]
FIGURE 10-5: Replacing empty strings with the word Undefined.
You can do so by clicking on ContactTitle, selecting the Replace Values command, and then entering the word Undefined in the Replace Values dialog box. As you can see in Figure 10-5, because you’re replacing an empty string, there’s no need to enter anything in the Value to Find input box.
TIP
If you need to adjust or correct the step where you replace values, you can reopen the Replace Values dialog box by clicking the Gear icon next to the name for that step. This is true for any action that requires a dialog box to complete. Clicking on the Gear icon next to any step name opens the appropriate dialog box for that step.
Concatenating columns
You can easily concatenate (join) the values in two or more columns. In Power Query, you do this by using the Merge Columns command. The Merge Columns command concatenates the values in two or more fields and outputs the newly merged values into a new column.
First choose the columns you want to concatenate, and then select the Transform tab and then the Merge Columns command, as shown in Figure 10-6.
[image: ]
FIGURE 10-6: Merging the Type and Code fields.
The Merge Columns dialog box opens, as shown in Figure 10-7. You have the option of choosing from a list of the most used delimiters (comma, space, tab, etc.). You can also select the Custom option to enter your own delimiter. In Figure 10-7, a hyphen (-) is used.
[image: ]
FIGURE 10-7: The Merge Columns dialog box.
As you can see, you can also name the new column that will be created.
The reward for your efforts is a new field containing the concatenated values from the original columns (see Figure 10-8). The resulting column will be named Merged. You can rename the column by right-clicking it and selecting the Rename option.
[image: ]
FIGURE 10-8: The original columns are removed and replaced with a new, merged column.
This feature is nifty but notice that Power Query removes the original Type and Code columns. In some instances, you’ll want to concatenate values but retain the source columns. In those instances, it’s useful to first copy the column and perform the extraction on the duplicate column. You can create a copy of a column by right clicking the column and selecting Duplicate Column. When the
duplicate column is created; it will be the last column (at the far right) of the table.
Changing case
Making sure that the text in your data has the correct capitalization may sound trivial, but it’s important. Imagine that you receive a customer table that has an address field where all addresses are lowercase. How will that look on labels, form letters, or invoices? Fortunately, Power Query has a few built-in functions that make changing the case of your text a snap.
For example, the ContactName field (see Figure 10-9) contains names that are formatted in all uppercase letters. To change these names to the more appropriate proper case, you can use the Format command found on the Transform tab. The Format command has options for lowercase, uppercase, and proper case (capitalize each word).
[image: ]
FIGURE 10-9: Reformatting the ContactName field to roper case.
REMEMBER
Selecting the Capitalize Each Word option reformats all values in the selected column to proper case.
Finding and replacing specific text
Imagine that you work in a company named BLVD, Inc. One day, the president of your company informs you that the abbreviation blvd on all addresses is now deemed an infringement of your company’s trademarked name and must be changed to Boulevard as soon as possible. How would you go about meeting this new requirement?
The Replace Values function is ideal in a situation like this. Right-click the Address field, and then click the Replace Values command.
In the Replace Values dialog box (shown in Figure 10-10), simply fill the Value to Find input box with the value you want to find, and then fill the Replace With input box with the value you want to use as a replacement.
[image: ] FIGURE 10-10: Replacing text values.
Note that clicking on Advanced Options reveals two optional settings, which are described in this list:
· Match entire cell contents: Selecting this option tells Power Query to replace the specified value only if that value makes up the entire contents of the record. This is useful when you’re attempting to replace a value such as 0 (zero) without replacing, for instance, all the zeros in the number 1,000.
· Replace Using Special Characters: Selecting this option allows you to use special invisible characters such as line feed, carriage return, or tab as replacement text. This option is useful when you want to force an indent or reposition the text so that it shows up on two lines.
Trimming and cleaning text
When you receive a data set from a mainframe system, a data warehouse, or even a text file, it isn’t uncommon to have field values that contain leading and trailing spaces. These spaces can cause some abnormal results, especially when you’re appending values with leading and trailing spaces to other values that are clean. To demonstrate this concept, look at the data set in Figure 10-11.
[image: ] FIGURE 10-11: Leading spaces can cause issues in analysis.
This view is intended to be an aggregate view that displays the sum of the dollar potential for California, New York, and Texas. However, the leading spaces are forcing each state into two sets, preventing you from discerning the accurate totals.
You can easily remove leading and trailing spaces by using the Trim function in Power Query. Figure 10-12 demonstrates how you would update a field to remove the leading and trailing spaces by using the Trim command found on the Transformation tab.
Again, the Trim command is applied to any column or columns you select. So, you can fix multiple columns at a time by simply selecting them before selecting the Trim command.
Figure 10-12 also shows the Clean command (beneath Trim). Whereas Trim removes leading and trailing spaces, the Clean command removes any invisible characters, such as carriage returns and other nonprintable characters that may slip in from external source systems. These characters are typically rendered in Excel as question marks or square boxes. But in Power Query, they show up as spaces.
[image: ]
FIGURE 10-12: The Trim command.
If the source system that supplies your data has a nasty habit of including strange characters and leading spaces, you can apply the Trim and Clean functions to sanitize the data set.
TIP
You may already know that the TRIM function in Excel removes the leading spaces, trailing spaces, and excess spaces within the given text. Power Query’s TRIM function removes leading and trailing spaces but doesn’t touch the excess spaces in the text. If excess spaces are a problem in your data, you can deal with them by using the Replace Values function to replace a given number of spaces with only one space.

Extracting the left, right, and middle values
In Excel, the RIGHT function, the LEFT function, and the MID function allow you to extract portions of a string starting from different positions:
· LEFT: Returns a specified number of characters, starting from the leftmost character of the string. The required arguments for the LEFT function are the text you’re evaluating and the number of characters you want returned. For example, LEFT("70056-3504", 5) would return five characters starting from the leftmost character (70056).
· RIGHT: Returns a specified number of characters starting from the rightmost character of the string. The required arguments for the RIGHT function are the text you’re evaluating and the number of characters you want returned. For example, RIGHT("Microsoft", 4) would return four characters starting from the rightmost character (soft).
· MID: Returns a specified number of characters starting from a specified character position. The required arguments for the MID function are the text you’re evaluating, the starting position, and the number of characters you want returned. For example, MID("Lonely", 2, 3) would return either three characters starting from the second character or character number 2 in the string (one).
Power Query has equivalent functions exposed through the Extract command, found on the Transformation tab (see Figure 10-13). The Extract command allows you to get specified characters from a value.
[image: ]
FIGURE 10-13: The Extract command allows you to pull out parts of the text found in a column.
The options under the Extract command are described in this list:
· Length: Transforms a given column into numbers that represent the number of characters in each row (like Excel’s LEN function).
· First Characters: Transforms a given column to show a specified number of characters from the beginning of text in each row (like Excel’s LEFT function).
· Last Characters: Transforms a given column to show a specified number of characters from the end of text in each row (like Excel’s RIGHT function).
· Range: Transforms a given column to show a specified number of characters starting from a specified character position (like Excel’s MID function).
REMEMBER
Applying the Extract command to a column effectively replaces the original text with the results of the operation you choose to apply. That is to say, the original text isn’t visible in the table after you apply the Extract command. For this reason, you may want to first copy the column and perform the extraction on the duplicate column.
You can create a copy of a column by right-clicking on the column and selecting Duplicate Column. When the duplicate column is created, it’s the last (rightmost) column of the table.
Extracting first and last characters
To extract the first N characters of text, highlight the column, select Extract ➪ First Characters, and then use the dialog box shown in Figure 10-14 to specify the number of characters you want to extract. In this case, the first three characters of the Phone field are extracted.
[image: ]
FIGURE 10-14: Extracting the first three characters of the Phone field.
To extract the last N characters of text, highlight the column, select Extract ➪ Last Characters, and then use the dialog box to specify the number of characters you want extracted.
Extracting middle characters
To extract the middle N characters of text, highlight the column and select Extract ➪ Range. The dialog box shown in Figure 10-15 opens.
The idea here is to tell Power Query to extract a specific number of characters starting from a certain position in the text. For example, the SicCode field is a 4-digit field. If you want to extract the two middle numbers of the SicCode, you will tell Power Query to start at the second character and extract two characters from there.
As you can see in Figure 10-15, the starting index is set to 2 (starting at the second character) and the number of characters is set to 2 (extract two characters from the starting index).
[image: ]
FIGURE 10-15: Extracting the two middle characters of the SicCode.
Splitting columns using character markers
Have you ever gotten a data set where two or more distinct pieces of data were jammed into one field and separated by commas? For example, a field labelled Address may have a single text value that represents address, city, state, and postal code. In a proper data set, this text would be split into four fields.
In Figure 10-16, you can see that the values in the ContactName field are strings that represent Last name, First name, and Middle initial. Imagine that you need to split this column string into three separate fields.
[image: ]
FIGURE 10-16: The Split Column command can easily split the ContactName Field into three separate columns.
Although this isn’t a straightforward undertaking in Excel, it can be done easily with the Split Column command (found on the Transform tab).
Selecting the Split Column command reveals two options; this list describes what you can do with them:
· By Delimiter: Split a column based on specific characters such as commas, semicolons, or spaces. This option is useful for parsing names or addresses or any field that contains multiple data points separated by delimiting characters.
· By Number of Characters: Split a column based on a specified number of characters — useful for parsing uniform text at a defined character position.
· By Positions: Split a column based on fixed numeric positions you specify.
· By Lowercase to Uppercase: Split a column where the case changes from lowercase to uppercase.
· By Uppercase to Lowercase: Split a column where the case changes from uppercase to lowercase.
· By Digit to Non-Digit: Split a column where the previous character is a digit, and the next consecutive character is a non-digit.
· By Non-digit to Digit: Split a column where the previous character is a non-digit and the next consecutive character is a digit.
In the example (refer to Figure 10-16), the contact names are made up of last names, first names, and middle initials, all separated (delimited) by commas. So, the By Delimiter option is the one I show you how to use.
You can highlight the ContactName field and select Split Column ➪ By Delimiter to open the Split by Column Delimiter dialog box, shown in Figure 10-17. 
[image: ]
FIGURE 10-17: Splitting the ContactName column at every occurrence of a comma.
This list describes the inputs:
· Select or Enter Delimiter: Use the drop-down menu to choose the delimiter that will define where the values should be split. If the delimiter isn’t listed as a choice on the drop-down list, you can select the Custom option and define your own.
· Split: Select how you want Power Query to use the specified delimiter. Power Query can split the column only on the first occurrence of the delimiter (the leftmost delimiter) — effectively creating two columns. Alternatively, you can tell Power Query to split the column only on the last occurrence of the delimiter (the rightmost delimiter) — again, creating two columns. The third option is to tell Power Query to split the column at each occurrence of the delimiter.
· Advanced Options: By default, selecting the option to split the column at each occurrence of the delimiter creates as many columns as there are delimiters. You can use the advanced options to override the default and limit the number of columns to create. You also have the advanced option to split your value into new rows instead of new columns.
Figure 10-18 shows the new columns created after the ContactName column is split at each comma. As you can see, three new fields are created. You can rename a field by right clicking the field name and selecting the Rename option.
[image: ]
FIGURE 10-18: The ContactName field has been split successfully into three columns.
Pivoting and unpivoting fields
You often encounter data sets like the one shown in Figure 10-19, where important headings (like Month) are spread across the top of the table, pulling double duty as column labels and actual data values. This matrix layout is easy to look at in a spreadsheet, but it causes problems when attempting to perform any kind of data analysis that requires aggregation or grouping, for example.
[image: ]
FIGURE 10-19: Matrix layouts are problematic for data analysis.
Power Pivot offers an easy way to unpivot and pivot columns, allowing you to quickly convert matrix-style tables to tabular data sets (and vice versa).
Unpivot Columns command
The Unpivot Columns command lets you select a set of columns and convert those columns into two columns: one column consisting of the old column labels and another containing the old column data.
For instance, in Figure 10-19, the month columns can be unpivoted by selecting the months and then clicking the Unpivot Columns command.
The resulting table is shown in Figure 10-20. Note that the month labels are now entries in a new column named Attribute. The month values are now in a new column named Value. You can, of course rename these columns to Month and Revenue, for example.
[image: ]
FIGURE 10-20: All months are now in a tabular format.
Unpivot Other Columns command
As helpful as the Unpivot Columns command is, it has a flaw: You must explicitly select the months that you want unpivoted. But what if the number of columns is ever growing? What if you unpivot January through June, but next month a new data set will arrive with July and then August and then September? Because the Unpivot Columns command forces you to essentially hard code the columns
you want unpivoted, you must redo the unpivot each month.
Fortunately, you can avoid this problem with the Unpivot Other Columns command. This nifty command allows you to unpivot by selecting the columns that you want to remain static and telling Power Query to unpivot all other columns.
For instance, Figure 10-21 demonstrates that rather than select the month columns, you can select the Market and Product_Description columns and then select Unpivot Other Columns from the Unpivot Columns drop-down menu.
[image: ]
FIGURE 10-21: Use Unpivot Other Columns when the number of matrix columns is variable.
Now, it doesn’t matter how many new month columns are added or removed each month. Your query always unpivots the correct columns.
TIP
Always use the Unpivot Other Columns option. Even if you don’t anticipate new matrix columns, it’s always a good bet to use the option that offers more flexibility for those unexpected changes in data.
Pivot Columns command
If you find that you need to transform your data from a tabular layout to a matrixstyle layout, you can use the Pivot Columns command.
Simply select the columns that will make up the header labels and values for the new matrix columns, and then select the Pivot Column command, shown in Figure 10-22.
[image: ]
FIGURE 10-22: Pivoting the Month and Value columns.
Before finalizing the pivot operation, Power Query opens a dialog box (shown in Figure 10-23) to confirm the value column and the aggregation method. By default, Power Query uses the Sum operation to aggregate the data into the matrix format. You can override this default setting by selecting a different operation (count, average, or median, for example). You can even specify that you don’t want aggregation performed. Clicking the OK button finalizes the pivot operation.
[image: ]
FIGURE 10-23: Confirm the aggregation operation to finalize the pivot transformation.

Creating Custom Columns
When transforming your data, you sometimes must add your own columns to extract key data points, create new dimensions, or even create your own calculations.
You start a new custom column by selecting the Add Column tab and clicking the Custom Column command. The Custom Column dialog box (shown in Figure 10-24) appears; here you specify the contents of your new column using Power Query formulas. When you add a new custom column, it won’t do anything until you provide a formula that gives it some utility.
[image: ]
FIGURE 10-24: The Custom Column dialog box.
As for the Custom Column dialog box, there’s not much to it. The inputs are described in this list:
· New column name: An input box where you enter a name for the column you’re creating.
· Available columns: A list box that contains the names of all columns in the query. Double-click any column name in this list box to automatically place it in the formula area.
· Custom column formula: The area where you type the formula.
As in Excel, a formula can be as simple as =1 or as complicated as an if statement that applies some conditional logic. Over the next few sections, I walk you through a few examples of creating custom columns to go beyond the functionality provided via the user interface.
But before diving into building Power Query formulas, you should understand how Power Query formulas differ from those in Excel. Here are some high-level differences to be aware of:
· No cell references. You can’t reach outside the Custom Column dialog box to select a range of cells. Power Query formulas work by referencing columns, not cells.
· Excel functions don’t work. The Excel functions you’re used to don’t work in Power Query. Power Query has many of the same kinds of functions as Excel, but it has its own formula language.
· Everything is case sensitive. In Excel, you can type in all lowercase, or all uppercase letters and your formulas will work. Not so in Power Query. To Power Query, sum, Sum, and SUM are three different items, and only one of them is acceptable.
· Data types of matter. Some fields are text fields, other fields are number fields, and still others are date fields. Excel does a good job of handling formulas that mix fields of differing data types. The Power Query formula language, which is extremely sensitive to data types, doesn’t have the built-in intelligence to gracefully handle data type mismatches. Data type issues are resolved with conversion functions, as covered later in this module.
· No tool tips or intelligence help. Excel is quick to throw up a tool tip or a menu of options when you start entering a new formula. Power Query has none of that. As of this writing, Power Query offers only a Learn About Power Query Formulas link to a Microsoft site dedicated to Power Query.
Don’t panic. Power Query formulas are not as gloomy as they sound. Let’s start with a simple custom column.
Concatenating with a custom column
Earlier in this module, I tell you how to concatenate values from two or more columns by using the Merge Columns command. Although this command is easy to use, it results in the original source columns being removed. You will likely want to concatenate values but still retain the source columns.
In these instances, you can create your own custom column. Follow these steps to create a new column that merges the Type and Code columns:
1. While in the Query Editor, choose Add Column ➪ Custom Column.
2. Place the cursor in the Custom Column Formula area (after the equal sign).
3. Find the Type column in the Available Columns list and double-click on it.
You see [Type] pop into the formula area after the equal sign.
4. After [Type], enter the following text: & "-" &.
This step ensures that the values in the two columns are separated by a hyphen.
5. Enter Number.ToText().
Number.ToText() is a Power Query function that converts a number to text format on the fly so that it can be used with other text. In this case, because the Code field is formatted as a number, you need convert it on the fly to join it to the Type field. I tell you more about data type conversions later in this module.
6. Place the cursor between the parentheses for the Number.ToText() function and then find the Code column in the Available Columns list and double-click it.
You see [Code] pop into the formula area between the parentheses
7. In the New Column Name input, enter MyFirstColumn.
At this point, the dialog box should look like the one shown in Figure 10-25. Note the message at the bottom of the dialog box: No syntax errors have been detected. This message refers to the syntax you entered. Every time you create or adjust a formula, you’ll want to ensure that this message states that no errors have been detected.
8. Click OK to add the custom column.
[image: ]
FIGURE 10-25: A formula to merge the Type and Code columns.
If all goes well, you have a new custom column that concatenates two fields. In this basic example, you see the foundation of how Power Query formulas work.
Understanding data type conversions
When working with formulas in Power Query, you inevitably need to perform some action on fields that have differing data types, as in the exercise in the previous section, where I show you how to merge the Type column (a text field) with the Code column (a numeric field). In that example, you use a conversion function to change the data type of the Code field so that it can be temporarily treated as a text field.
A conversion function does exactly what it sounds like: It converts data from one data type to another.
Table 10-1 lists common conversion functions. As demonstrated in the previous section, you simply wrap these functions around the columns that need converting.
[image: ] TABLE 10-1
To find and change the data type for a field, place the cursor in the field and then select the Data Type drop-down menu on the Transform tab (see Figure 10-26).
[image: ]
FIGURE 10-26: Use the Data Type drop-down menu to discover and select the data type of a given field.
The data type at the top is the type of field the cursor is in. You can edit the data type for the field by selecting a new type from the drop-down list.

Spicing up custom columns with functions
With a few basics and a little knowledge of Power Query functions, you can create transformations that go beyond what you can do by using the Query Editor. In this example, I show you how to use a custom column to pad numbers with zeros.
You may encounter a situation where key fields are required to have a certain number of characters to make the data able to interface with peripheral platforms such as ADP or SAP. Suppose that the CompanyNumber field must be ten characters long. Those company numbers that aren’t ten characters long must be padded with enough leading zeros to create a ten-character string.
The secret to this supplying the proper number of characters is to add ten leading zeros to every company number, regardless of the current length, and then pass them through a function similar to the RIGHT function, which extracts only the rightmost ten characters.
For example, you would first convert company number 29875764 to 000000000029875764; then you would use the RIGHT function to extract only the rightmost ten characters, leaving you with 0029875764.
Although you follow essentially two steps, you can accomplish the same result with only one custom column. Here’s how:
1. While in the Query Editor, choose Add Column ➪ Custom Column.
2. Place the cursor in the Custom Column Formula area (after the equal sign).
3. Enter ten zeros in quotes (as in "0000000000") followed by an ampersand (&).
4. Enter Number.ToText().
5. Place the cursor between the parentheses for the Number.ToText() function and then find the CompanyNumber column in the Available Columns list and double-click it.
You see [CompanyNumber] pop into the formula area between the parentheses.
At this point, the formula area should contain this syntax:
"0000000000"&Number.ToText([CompanyNumber])
This formula results in nothing more than a concatenation of ten zeros and the CompanyNumber. The goal is to go further and extract only the rightmost ten characters. Unfortunately, the RIGHT function is an Excel function that doesn’t work in Power Query. However, Power Query does have an equivalent function named Text.End(). Like the RIGHT function, the Text.End() function requires a couple of parameters: the text expression and the number of characters to extract:
Text.End([MyText], 10)
In this example, the text expression is the formula, and the number of characters to extract is 10.
6. Enter Text.End before your existing formula, and then follow the formula with, 10.
Here’s the final syntax:
Text.End("0000000000"&Number.ToText([CompanyNumber]), 10)
7. In the New Column Name input, enter TenDigitCustNumber.
At this point, the dialog box should look like the one shown in Figure 10-27. Again, note the message at the bottom of the dialog box. This message will tell you if you have a syntax error in your formula. Make sure that the message at the bottom of the dialog box reads No syntax errors have been detected.
8. Click OK to apply the custom column.
[image: ]
FIGURE 10-27: A formula to create a consistent ten-digit padded CompanyNumber.
Table 10-2 lists other Power Query functions that are useful in extending the capabilities of custom columns. Take a moment to examine the list of functions and note how they differ from their Excel equivalents. Remember that Power Query functions are case sensitive.
[image: ]

Adding conditional logic to custom columns
As you might notice in Table 10-2, Power Query has a built-in IF function. The IF function is designed to test for conditions and provide different outcomes based on the results of those tests. In this section, you’ll see how you can control the output of your custom columns by utilizing Power Query’s IF function.
As in Excel, Power Query’s IF function evaluates a specific condition and returns a result based on a true or false determination:
if [Expression] then [Result1] else [Result2]
REMEMBER
In Excel, you think of commas in an IF function as then and else statements. The formula IF(Babies = 2, "Twins", "Not Twins") would translate to this: If Babies equals 2, then Twins, else Not Twins In Power Query, you don’t use commas. You spell out the entire expression.
You can also use the IF function to save steps in your analytical processes and, ultimately, save time. For example, you may need to tag customers as either large customers or small customers, based on their dollar potential. You decide to add a custom column that contains either “LARGE” or “SMALL” based on the revenue potential of the customer.
With the help of the IF function, you can tag all customers with one custom column
that uses this formula:
IF [2020 Potential Revenue]>=10000 then "LARGE" else "SMALL"
This function tells Power Query to evaluate the [2020 Potential Revenue] field for each record. If the potential record is greater than or equal to 10,000, use the word LARGE; if not, use the word SMALL.
Figure 10-28 demonstrates this if statement as it is applied in the Custom Column dialog box.
[image: ]
FIGURE 10-28: Applying an IF statement in a custom column.
TIP
Power Query pays no attention to white space, so you can add as many spaces and carriage returns as you want. If the correct case and spelling are used, Power Query doesn’t complain.
Figure 10-28 illustrates how separating formulas into separate lines can make them much easier to read.
Grouping and Aggregating Data
In some cases, you may need to transform your data set into compact groups to get it into a manageable size of unique values. You may even need to summarize numerical values into an aggregate view. An aggregate view is a grouped snapshot of your data that shows sums, averages, counts, and more.
Power Query offers a Group By feature that enables you quickly group data and create aggregate views. Follow these steps to use the Group By feature:
1. While in the Query Editor, select the Group By command on the Transform tab.
The Group By dialog box opens.
2. From the Group By drop-down menu, select the field you want to group by. Click the plus sign (+) above the Group By drop-down list to add additional fields to grouping.
Figure 10-29 shows grouping by State and City.
[image: ]
FIGURE 10-29: Using the Group By dialog box to create a view of 2021 Total Potential by State and City.
3. Use the New Column Name input box to give the new aggregate column a name (for example, 2021 Total Potential).
4. From the Operation drop-down list, select the kind of aggregation you want to apply (Sum, Count, Avg, Min, Max, and so on).
5. Use the Column drop-down list to choose the column that will be aggregated (for example, 2021 Potential Revenue).
6. Click the OK button to confirm and apply your changes.
Figure 10-30 illustrates the resulting output.
[image: ]
FIGURE 10-30: The resulting aggregate view by State and City.
TIP
When you apply the Group By feature, Power Query removes all columns that were not used when configuring the Group By dialog box. This leaves you with a clean view of just your grouped data.
Working with Custom Data Types
The Custom Data feature of Power Query allows you to store multiple columns of data in one column as metadata. Excel formulas can then interact with these rich data types to expose the stored data within. In this section, you explore the basics of using custom data types in your reporting.
EXERCISE FILES: CustomDataTypes.xlsx
To be frank, the term custom data type is a bit unfortunate, because it doesn’t really correlate with the traditional meaning of data type (number, date, currency, and so on). In Power Query, you can think of a custom data type as a kind of container that allows you to store the data for many columns and then use that data elsewhere in your workbook.
You can get a sense of the power of this feature by following these steps:
1. In the Query Editor, right-click the Employee column and select Create Data Type.
The Create Data Type dialog box, shown in Figure 10-31, appears.
[image: ] FIGURE 10-31: Creating a custom data type.
2. Click the Advanced option to reveal a list of available fields
The idea here is that the Display column (Employee, in this case) will be a kind of container that will hold data from other columns you specify.
3. Select the Region column in the list of available columns and then click the Add button.
Repeat for each column in the list of available fields.
4. Click the OK button to confirm your changes

At this point, your data preview window will show only the Employee column because that’s the column you selected as your Display column. As you can see in Figure 10-32, clicking any value in the Employee column now results in a table below the data preview window, which shows all the data contained for that value.
[image: ]
FIGURE 10-32: Each value in a data type column contains the data for underlying columns, as shown below the data preview window.
Click the Close & Load button on the Home tab of the Power Query Editor to send your results to a new worksheet. In Figure 10-33, you can see that the output of this query is a list of values from the Employee column, each containing the Data Type icon designed to let you know that the value is part of a data type. The smart icon to the right of the table allows you to add any of the underlying values for that data type.
[image: ]
FIGURE 10-33: Data types have a special icon next to each value and allow you to see any values in underlying columns.
The real power of custom data types is the ability to reference underlying values via simple formulas. To illustrate one way to use data types, look at Figure 10-34. Here, I loaded a data validation drop-down with the values from the Employee column (the Data Type header). You can see the icon next to the selected employee name, confirming the value is a data type. Now you can reference that
value with a simple formula to see the available columns underneath.
[image: ]
FIGURE 10-34: Referencing a data type value and entering the dot (.) operator allows you to select any of the underlying columns.
That’s right. Reference a data type, enter the dot (.) operator, and you’ll have access to any of the underlying column values. Selecting a new employee from the data validation drop-down automatically pulls that employee’s data.
REMEMBER
Refreshing your query will not only bring in any new data type headers, but also automatically update any of the values resulting from a formula that references your data types.


[bookmark: _Ref127768986]Making Queries Work Together
Data is frequently analysed in layers, with each layer of analysis using or building on the previous layer. You may not know it, but you already build layers all the time. For instance, when you build a pivot table using the results of a Power Query output, you’re layering your analysis. When you build a query based on a table created by a SQL Server view, you’re also creating a layered analysis.
Sure, you would probably love to be able to analyse a single data source and call it a day. But that’s not how data analysis works. You often find the need to build queries on top of other queries to get the results you’re looking for. That’s what this module is all about. In this module, I help you examine a few ways you can advance your data analysis by making your queries work together.
Reusing Query Steps
Data analysts commonly rely on the same main data tables for all kinds of analysis. Even the simple table shown in Figure 11-1 can be used to create different views: sales by employee, sales by business segment, or sales by region, for example.
[image: ]
FIGURE 11-1: This data can be used as the source for various levels of aggregated analysis.
Of course, you can build separate queries, each performing different grouping and aggregation steps, but that would mean repeating all the data clean-up steps you needed before performing any kind of analysis.
To get a better understanding of how query steps can help save time, take a moment to follow these steps:
1. Open the Sales By Employee.xlsx workbook, found in the sample files for this course.
2. Place the cursor anywhere inside the table and then choose Data ➪ From Table/Range.
Power Query opens the Query Editor.
3. While in the Query Editor, click the Filter drop-down list for the Market field and filter out the Canada market. (Remove the check mark next to Canada.)
4. Select the Last_Name and First_Name fields and then choose Transform ➪ Merge Columns.
The Merge Columns dialog box appears.
5. Create a new Employee field, joining Last_Name and First_Name and separating them by a comma, as shown in Figure 11-2.
[image: ] 
FIGURE 11-2: Merge the Last_Name and First_Name columns to create a new Employee field.
6. Select only the Employee column and click the Group By command on the Transform tab.
The Group By dialog box opens, as shown in Figure 11-3.
[image: ]
FIGURE 11-3: Group the Employee field and Sum Sales Amount to create a new Revenue column.
7. The goal is to Group By the Employee field to get the Sum of Sales Amount, as shown in Figure 11-3. Name the new aggregated column Revenue.
At this point, you’ve successfully created a view that shows total revenue by employee. As you can see in Figure 11-4, the query steps include all the preparation work you did before group.
What happens if you want to create another analysis using the same data? For instance, what if you want another view that shows Employee sales by business segment?
You could always start from Step 1 and import another copy of the source data, but you’d have to repeat the preparation steps (the steps for Filtered Rows and Merged Columns, in this case).
A better way is to reuse the steps you’ve already created by extracting them into a new query. The idea is to first decide what steps you want to reuse and then right-click the step immediately below it. In this scenario (refer to Figure 11-4), you keep all query steps until Grouped Rows.
[image: ]
FIGURE 11-4: All the query steps before Grouped Rows are needed in order to prepare the data for grouping.
8. Right-click the Grouped Rows step and select Extract Previous.
The Extract Steps dialog box opens.
9. Name the new query SalesByBusiness, as shown in Figure 11-5. Click the OK button to confirm.
[image: ] FIGURE 11-5: Naming the new query SalesByBusiness.
After you click OK, Power Query does two things:
· Moves all extracted steps to the newly created query
· Ties the original query to the new query
Both queries are sharing the extracted steps. You can see the new SalesByBusiness query in the pane on the left, as shown in Figure 11-6. You now can click on the SalesByBusiness query and start applying any needed transformations.
[image: ]
FIGURE 11-6: The two queries are now sharing the extracted steps.
This concept of extracting steps can be a bit confusing. The bottom line is that instead of starting from square one with a brand-new query, you’re telling Power Query you want to create a new query that uses the steps you’ve already created.

REMEMBER
When two or more queries share extracted steps, the query that contains the extracted steps serves as the data source for the other queries. Because of this link, the query that contains the extracted steps cannot be deleted. You must first delete all dependent queries before deleting the query that holds the extracted steps.
Understanding the Append Feature
Power Query’s Append feature allows you to add the rows generated from one query to the results of another query. In other words, you copy records from one query and add them to the end of another.
The Append feature comes in handy when you need to consolidate multiple identical tables into one table. For example, if you have tables from the North, South, Midwest, and West regions, you can consolidate the data from each region into one table using the Append feature.
To help you better understand the Append feature, I’ll walk you through an exercise that consolidates data from four different regions into one table. In this walkthrough, I use the region data found on four different tabs in the Appending_Data. xlsx sample file, shown in Figure 11-7.
[image: ] 
FIGURE 11-7: The data found on each region tab needs to be consolidated into one table.
EXERCISE FILES: Appending_Data.xlsx
Creating the needed base queries
The Append feature works only on existing queries. No matter what kind of data sources you have, you need to import them into Power Query before you can append them together. In this case, it means importing all the region tables into queries.
Follow these steps to import the needed base queries:
1. Go to the North Data worksheet, place the cursor anywhere inside the table, and then choose Data ➪ From Table/Range.
The Query Editor activates, showing you the contents of the table you just imported.
To finalize the creation of the query, you need to close and load the query.
Now, because you’re creating this query simply for the purpose of appending it to other queries, you don’t need to close and load to the workbook. You can choose instead to close and load the data as connection-only.
2. On the Home tab of the Query Editor, click the drop-down arrow under the Close & Load command and select Close & Load To.
3. In the Import Data dialog box, choose the option Only Create Connection, and then click the OK button.
4. Repeat Steps 1 through 3 for the other worksheets in the workbook.
After you’ve created queries for each region, open the Queries & Connections pane (choose Data ➪ Queries & Connections in the Excel Ribbon) to see all queries. As you can see in Figure 11-8, each query is a connection-only query.
[image: ]
FIGURE 11-8: Create a connection-only query for each region.
Now that your data is in queries, you can start appending.
Appending the data
Follow these steps to append data from all other queries to the NorthData query:
1. In the Queries & Connections pane, right-click the NorthData query and select Append.
The Append dialog box, shown in Figure 11-9, appears
2. Choose the Three or More Tables option at the top of the dialog box.
The Append dialog box reconfigures to show two list boxes. The Available Tables list (on the left) includes all the existing queries in your workbook. The Tables to Append list (on the right) contains the query to which you’re currently appending data (the NorthData query in this scenario).
[image: ]
FIGURE 11-9: Appending multiple queries to NorthData.
3. Select any query you want appended from the Available Tables list on the left and add it to the Tables to Append list box on the right.
4. Click OK to confirm your selections.
The Power Query Editor launches, giving you the opportunity to review and edit the results. You’ll notice Power Query creates a new query called Append1.
5. Rename the query in the Query Settings pane by typing ConsolidatedView in the Name box.
6. Click the Close & Load button to save and exit the Power Query Editor.
Figure 11-10 illustrates the final output. You’ve successfully created a consolidated table of region data.
[image: ] 
FIGURE 11-10: The final output.
WARNING
Note in Figure 11-9 that the NorthData query is on both the Available Tables list on the left and the Tables to Append list on the right. Be careful not to move the NorthData query to the right list box by mistake. If you do, you’ll append the query to itself, effectively duplicating all the records within the query. Unless you have some strange requirement where creating exact copies of records is beneficial, you will want to avoid appending the current query to itself.

REMEMBER
As you append each query, you may be tempted to scroll down to the bottom of the data to see the newly added records. Unfortunately, the data preview in the Query Editor shows only a truncated sample set of records. Even if you scroll to the bottom of the preview, you’re unlikely to see the appended data.
Beware of Mismatched Column Labels
When you append one query to another, Power Query first scans the column labels for both queries to capture all column names. It then outputs all distinct column names and consolidates the data from both queries into the appropriate columns. It uses the column labels as a guide to knowing which data should be placed in which column.
If the column labels in your queries don’t match, Power Query consolidates data for any match column, leaving null values in any columns that don’t match.
Imagine that you have one query with the column labels Region and Revenue, and another query with the column labels Region and SalesAmount. Appending these two records yields a final table with all three columns: Region, Revenue, and SalesAmount. The records from the first query are entered into the Region and Revenue fields. The records from the second query are entered into the Region and SalesAmount fields, essentially leaving gaps in the Revenue and SalesAmount fields.
The bottom line is to make sure the column labels in your queries are identical before appending. As long as the column labels in each query are identical, Power Query can append the data correctly. Even if the columns in each query are positioned in a different sequence, Power Query can use the column labels to get all the data into the correct columns.
Understanding the Merge Feature
In your data adventures, you often find the need to build queries that join the data between two tables. For example, you may want to join an employee table to a transaction table to create a view that contains both transaction details and information on the employees who logged those transactions.
In this section, I describe how you can leverage the Merge feature in Power Query to join data from multiple queries.
Understanding Power Query joins
Similar to VLOOKUP or XLOOKUP in Excel, the Merge feature joins the records from one query to the records in another by matching on a unique identifier. An example of a unique identifier is Customer ID or Invoice Number.
You can join two data sets in one of several ways. The kind of join you apply is important because it determines which records are returned from each data set.
Power Query supports six kinds of joins, as described in the following list and shown in Figure 11-11:
· Left Outer: Tells Power Query to return all records from the first query, regardless of matching, and only those records from the second query that have matching values in the joined field
· Right Outer: Tells Power Query to return all records from the second query, regardless of matching, and only those records from the first query that have matching values in the joined field
· Full Outer: Tells Power Query to return all records from both queries, regardless of matching
· Inner: Tells Power Query to return only those records from both queries that have matching values
· Left Anti: Tells Power Query to return only those records from the first query that don’t match any of the records from the second query
· Right Anti: Tells Power Query to return only those records from the first query that don’t match any of the records from the second query
[image: ]
FIGURE 11-11: The kinds of joins supported by Power Query.
Merging queries
EXERCISE FILES: Merging_Data.xlsx
As you can see in Figure 11-12, two existing queries are in the Queries & Connections pane: Questions and Answers. These queries represent the questions and answers from the interview. The goal is to merge these two queries to create a new table showing questions and answers side-by-side.
[image: ]
FIGURE 11-12: You need to merge the Questions and Answers queries into one table.
REMEMBER
The Merge feature can be used only with existing queries. No matter what kind of data sources you have, you need to import them into Power Query before you can use them in a merge.
Follow these steps to perform the merge:
1. Choose Data ➪ Get Data ➪ Combine Queries ➪ Merge (see Figure 11-13).
2. Select the Questions query in the top drop-down box.
3. Hold down the Ctrl key on the keyboard, and then click InterviewID and QuestionID — in that order.
4. Select the Answers query in the lower drop-down box.
5. Hold down the Ctrl key on the keyboard, and then click InterviewID and AnswerID — in that order.
6. Use the Join Kind drop-down box to select the kind of join you want Power Query to use. In this case, the default, Left Outer, works.
[image: ]
FIGURE 11-13: Activating the Merge dialog box.

7. Click the OK button to finalize and open the Query Editor. 
Figure 11-14 illustrates the completed Merge dialog box. Note the small numbers 1 and 2 in the InterviewID and QuestionID fields. These small numbers are assigned based on the order in which you selected them (refer to Steps 3 and 5).
[image: ]
FIGURE 11-14: The Completed Merge dialog box.
The order in which you selected the unique identifiers in each query matters. The two columns tagged with the small number 1 will be joined regardless of column labels. The two columns tagged with the small number 2 will also be joined.
TIP
At the bottom of the Merge dialog box, Power Query shows you how many records from the lower query match the top query, based on the unique identifiers you selected. Looking at Figure 11-14 again, you’ll see about 17,600 answer records match the 26,910 question records. You don’t need a 100 percent match for the merge to be valid. There might be a good reason that the records in the two queries don’t all match up. In this case, not all questions were answered in all interviews, so the Answers query has fewer records.
8. With the new merged query open in the Query Editor, click the Expand icon in the NewColumn field and choose the fields you want included in the final output (as shown in Figure 11-15). In this case, just choose the Answer field.
At this point, you can apply more transformations, if needed.
[image: ]
FIGURE 11-15: Expand the NewColumn field and choose the merged fields you want to output.
9. When you’re happy with the way things look, click the Close & Load command to output the results to the workbook.
Figure 11-16 shows the final merged query.
[image: ]
FIGURE 11-16: The final table with merged questions and answers.
If you need to adjust or correct a merged query, right-click the query in the Queries & Connections pane and select Edit. Once the Power Query Editor opens, right-click the Source query step and select Edit Settings (see Figure 11-17). Alternatively, you can simply click the gear icon next to the Source query step. This action opens the Merge dialog box, where the necessary changes can be applied.
[image: ]
FIGURE 11-17: Right-click the Source query step and select Edit Settings to reactivate the Merge dialog box.
Understanding Fuzzy Match
In some cases, the tables you need to merge won’t have any unique identifiers that match exactly. In these situations, you can leverage Power Query’s Fuzzy Match feature.
EXERCISE FILES: FuzzyMatch.xlsx
Follow these steps to perform the merge:
1. Click Data ➪ Get Data ➪ Combine Queries ➪ Merge.
2. Select the Employee query in the top drop-down box, and then click the Last_Name column.
3. Select the Revenue query in the lower drop-down box and click the Employee column.
4. Use the Join Kind drop-down box to select the kind of join that you want Power Query to use.
In this case, the default Left Outer works.
5. Select the Use Fuzzy Matching to Perform the Merge check box.
6. Click the arrow next to Fuzzy Matching Options to reveal the available configuration options.
[image: ]
FIGURE 11-18: The Merge dialog box with Fuzzy Matching selected.
The Merge dialog box should look like the one shown in Figure 11-18. Here are your options:
· Similarity Threshold: The Similarity Threshold tells Power Query how similar two values need to be to match. The default value (applied if left blank) is .80, which roughly translates to an 80 percent similarity. Entering a value of 1 in the Similarity Threshold means you need the two values to match 100 percent to qualify as a match. The minimum value you can enter here is 0, but this causes all values to match each other. The number you place here really depends on the data you’re using. In most cases, the default of .80 is the safest bet, because it will match a decent number of records without resulting in too many false matches.
· Ignore Case: The Ignore Case check box specifies what role character case (uppercase, lowercase, and so on) plays in the matching. The default behaviour is case insensitive, which means case is ignored when matching values. If you need to match values taking character case into account, deselect the Ignore Case check box.
· Match by Combining Text Parts: You can tell Power Query to try to combine parts of text in each record to complete a match. For instance, if one of your tables contains the value “star slight,” while the other table contains the value “starlight,” Power Query will try to match “starlight” with “stars light.” In other words, in addition to its normal matching algorithm, it will combine text and try the match again.
· Maximum Number of Matches: This option defines the maximum number of matching rows that will be returned for each record. For example, if you only want to find one matching row for each record, you’ll specify a value of 1. The default behaviour is to return all matches.
· Transformation Table: In some cases, you may already have a mapping table containing two values (in separate columns) which you’ve determined should match automatically. You can import your mapping table in a separate query and then point to it in the Transformation table option.
7. Enter .60 as the Similarity threshold.
Because you’re dealing with names that are unique, you can risk a lower similarity percent than the default.
8. Enter 1 as the Maximum Number of Matches.
This will ensure that you only get one match per employee.
9. Click the OK button to perform the merge and launch the Power Query Editor.
10. Now you can click the Expand icon next to the Revenue column and choose the columns you want to be included in the final output. In this case, all you need is the Revenue column.
11. Click the Close & Load command to output the results to the workbook.
TIP
At the bottom of the Merge dialog box, Power Query shows you how many records from the lower query match the top query based on the unique identifiers that you selected. When using the fuzzy match feature, it’s often useful to try different similarity thresholds to get more matches. You’ll find that trial and error will often be necessary to find the right balance of matching as many records as possible without including too many false matches.


[bookmark: _Ref127768992]Extending Power Query with Custom Functions
Power Query records all actions using its own formula language (known as the M language). When you connect to a data source and apply transformations to that data, Power Query diligently saves your actions as M code behind the scenes in query steps. The transformation steps can then be repeated when you refresh the data in your query.
That backstage coding is relatively transparent, and can, for the most part, be ignored for most data processing activities. In this module, I show you how to leverage the M language to extend the capabilities of Power Query to create your own custom functions and perform truly heroic data processing.
Creating and Using a Basic Custom Function
When building a custom function for Power Query, you’re essentially doing nothing more than creating a query and manipulating its M code to return a desired result. That result can be an array, a data table, or a single value.
To help you gain a sense of the general steps taken to create a custom function, I show you how to build a basic mathematical function that calculates profit.
This function should be able to take a revenue amount and a cost amount and output a profit amount using this basic mathematical operation:
Revenue – Cost = Profit
For basic functions such as this one, you can start with a blank query and simply enter the needed M code from scratch. Follow these steps:
1. Click the Data tab in Excel and select Get Data ➪ From Other Sources ➪Blank Query.
This step activates the Query Editor window.
2. On the Query Editor Ribbon, click on the View tab and select the Advanced Editor command.
3. When the Advanced Editor window opens, delete the starter syntax you see in the code input box.
4. Enter the following code into the code input box:
let Profit = (Revenue, Cost)=>
Revenue-Cost
in Profit
· Line 1 of the code tells Power Query that this is a function called Profit, requiring two parameters. For clarity, the two parameters are named Revenue and Cost, though Power Query doesn’t care what you name them if the names start with a letter and have no spaces.
· Line 2 in the code essentially tells Power Query to subtract the Cost parameter from the Revenue parameter.
· Line 3 of the code tells Power Query to return the result.

Figure 12-1 illustrates what the code looks like in the Advanced Editor window.
[image: ]
FIGURE 12-1: Enter your custom code in the Advanced Editor window.
5. Click the Done button to close the Advanced Editor window.
6. In the Query Settings pane, change the name of the query in the Name input box (see Figure 12-2) to FunctionProfit.
[image: ]
FIGURE 12-2: Give your custom function a friendly name.
7. At this point, you can select the Home tab of the Query Editor and click the Close & Load button.
Power Query adds the query to the Queries & Connections pane as a connectiononly query. Queries recognized as functions are automatically saved as connectiononly. You can now use your function in other queries that contain revenue and cost fields. For example, Figure 12-3 illustrates the contents of the Module12_Sample. txt text file, which you can find in the download files for this course.
[image: ]
FIGURE 12-3: A text file containing Invoice details.
This text file contains a table of invoices with the fields Qty, UnitCost, and Unit-Price. Your newly created function can be used to calculate profit using these fields.


To create a new query from this text file, follow these steps:
1. Click the Data tab in Excel and select Get Data ➪ From File ➪ From Text/CSV.
This step opens the Import Data dialog box.
2. Browse for, and select, the Module12_Sample.txt file.
Power Query opens a preview of the data within the text file.
3. Click the Transform Data button to activate the Power Query Editor.
4. While in the Query Editor, click the Add Column tab and then click the Custom Column button.
The Custom Column dialog box opens. Here, you can call the custom function and pass it the needed parameters
5. In this case, enter the following line:
= FunctionProfit([UnitPrice], [UnitCost])*[Quantity]
This syntax calls the FunctionProfit custom function and passes the UnitPrice and UnitCost fields as the required parameters. The results are then multiplied by the Quantity field. The Custom Column dialog box should look like the one shown in Figure 12-4.
[image: ]
FIGURE 12-4: Use the Custom Column action to invoke your function.
6. Click the OK button to apply the custom column.
When you confirm the changes, Power Query triggers the function and calculates profit for each row in the data table (see Figure 12-5).
[image: ]
FIGURE 12-5: The custom column showing the results of the function for each row in the table.
Although this example is quite basic, it demonstrates that you can define a function that requires parameters and then use the function in other queries. This simple technique is the foundation for creating more useful functions.
REMEMBER
Power Query functions are stored in the workbook in which they reside. Unfortunately, there’s no easy way to share functions between workbooks. If you start a new workbook, you need to re-create your functions in that new workbook.
Creating a Function to Merge Data from Multiple Excel Files
When building a basic function, such as the profit function you create in the earlier section “Creating and Using a Basic Custom Function,” it’s no big deal to start from a blank query and enter all the code from scratch. But for more complex functions, it’s generally smarter to build a starter query via Query Editor and then manipulate the M code to accomplish what you need.
Imagine that you have a set of Excel files in a folder (see Figure 12-6). These files all contain a worksheet named MySheet that holds a table of data. The tables in each file have the same structure but need to be combined into one file. This is a common task/nightmare that most Excel analysts have faced at one time or another. If you don’t have a solid knowledge of Excel VBA programming, this task typically entails opening each file, copying the data on the MySheet tab, and then pasting the data into a single workbook.
[image: ]
FIGURE 12-6: You need to merge into one table the data in all the Excel files in this folder.
Power Query can make short work of this task, but it requires a bit of direction via a custom function. Now, it would be difficult for most anyone to start from a blank query and type out the M code for the relatively complex function needed for this endeavor. Instead, you could build a starter query via Query Editor and then wrap the query in a function.
To help you understand this concept, I present the following steps:
1. On the Excel Data tab, select Get Data ➪ From File ➪ From Workbook.
2. Browse to the folder that contains all the Excel files and choose only one of them.
3. In the Navigator pane (shown in Figure 12-7), choose the sheet that holds the data that needs to be consolidated.
In this case, select MySheet then click the Transform Data button to open the Query Editor.
[image: ]
FIGURE 12-7: Connect to one of the Excel files in the target folder, and navigate to the sheet holding the data that needs to be consolidated.
4. Use the Query Editor to apply a few basic transformation actions to the data.
As an example, the Applied Steps shown in Figure 12-8 shows some basic transformation steps. For the purposes of this exercise, the specific steps you choose to apply aren’t important.
[image: ]
FIGURE 12-8: Use the Query Editor to apply any necessary transformation actions.
5. Open Advanced Editor window by clicking the View tab and selecting the Advanced Editor command.
Figure 12-9 demonstrates that as you build out the starter template, Power Query diligently creates the bulk of the code for your function. Note in the portion of the code that’s highlighted in grey (for illustration), Power Query has hard-coded the file path and filename of the Excel file that was originally selected. The idea is to wrap this starter code in a function that passes a dynamic file path and filename.
[image: ]
FIGURE 12-9: Open the Advanced Editor to see the starter code.
6. Wrap the entire block of code with function tags, specifying that this function requires two parameters: FilePath and FileName. Also replace the hard-coded file path and filename with each respective parameter.
Here’s the syntax shown in Figure 12-10:
let GetMyFiles=(FilePath, FileName) =>
let
Source = Excel.Workbook(File.Contents(FilePath&FileName),
null, true),
MySheet1 = Source{[Name="MySheet"]}[Data],
#"Promoted Headers" = Table.PromoteHeaders(MySheet1,
[PromoteAllScalars=true]),
#"Removed Columns" =
Table.RemoveColumns(#"Promoted Headers",{"Branch_Number",
"Effective_Date"})
in
#"Removed Columns"
in GetMyFiles

[image: ]
FIGURE 12-10: Wrapping the starter code with function tags and replacing the hard-coded names with your dynamic parameters.
7. Click Done to close the Advanced Editor.
As you can see in Figure 12-11, the Query Editor window contains two input boxes for the two parameters we’ve defined (FilePath and FileName). This query is officially a function that accepts two parameters.
[image: ]
FIGURE 12-11: The Query Editor after defining parameters.
8. In the Query Settings pane, change the name of the query in the Name input box. Give the function a reasonably descriptive name, such as (in this scenario) fnGetMyFiles.
9. Click the Home tab of the Query Editor and click the Close & Load button.
At this point, the custom function is ready to be used on all files in the target folder.
10. Click the Data tab in Excel and select Get Data ➪ From File ➪ From Folder, browse to the folder that contains all the Excel files, and click the Open button.
A new window appears to show you a table displaying all the files in the chosen folder.
11. Click the Transform Data button.
The Query Editor window activates to display a table containing a record for each file in the chosen folder (see Figure 12-12). Each row contains attributes for each of the files listed. The columns you’re interested in are Folder Path and Name, which provide the function with the needed FilePath and FileName parameters.
[image: ]
FIGURE 12-12: Create a new query using the From Folder connection type to retrieve a table of all files in the target folder.
12. Click the Add Column tab, and then click the Custom Column command.
The Custom Column dialog box opens.
13. Invoke the function and pass the Folder Path and Name fields as parameters separated by commas (see Figure 12-13).
[image: ]
FIGURE 12-13: Use the Custom Column action to invoke the function.
[image: ]
FIGURE 12-14: Power Query triggers the function and returns a table array for each file in the folder.
14. Click the Expand icon for your new custom column.
You see a list of fields included in each table array, as shown in Figure 12-15.
[image: ]
FIGURE 12-15: Click the Custom column header to expand the table arrays.
15. Choose which fields in the table array to show, select the Expand radio button, and then click the OK button.
With each table array expanded, Power Query exposes the columns pulled from each Excel file and adds the detailed records to the data preview. Figure 12-16 illustrates the data preview for the final combined table.
[image: ]
FIGURE 12-16: Power Query exposes the columns pulled from each Excel file and adds the detailed records to create the final combined view.
16. At this point, you can remove unneeded columns and then click the Close & Load command to output the combined table.
As you look at the final combined view, don’t lose track of the fact that this relatively complex task was facilitated by a simple custom function. For all the steps required to accomplish this task, you expend very little effort on creating the code for the function. Power Query writes the code for the core functionality, and you simply wrap that code into a function.
The takeaway here is that you don’t have to be an expert on Power Query’s M language to pull together effective and useful custom functions. You can leverage the Query Editor to create some base code and then adjust from there.


Creating Parameter Queries
A parameter query is a kind of query that relies on one or more parameters to run. Although that sounds suspiciously like the custom functions covered earlier in this module (after all, they ran on parameters), there is a subtle difference. 
A parameter query is one where you provide the parameters. So rather than have the parameters come from a predefined query, you enter the parameters. This comes in handy when creating interactive reporting for others to consume.
In this section, I walk you through creating your first parameter query.
Preparing for a parameter query
To create a proper parameter query, you first must understand the parameters necessary to make your reporting interactive. The best way to gain this understanding is to explore the target data source.
In this scenario, I tell you how to build an interactive view of the top-grossing films for any given year and month. To accomplish this task, leverage the Box Office Mojo website. Box Office Mojo provides an array of box office reporting tools, including a monthly index of top-grossing films.
The URL for the monthly index includes a month parameter and a year parameter. Enter this URL into any browser and you see a list of the top-grossing films of January 2020:
www.boxofficemojo.com/month/january/2020/
A look at the website (shown in Figure 12-17) confirms that the URL opens a web page that contains the table you would expect to see: an index of movies for January 2020 box office. The parameters in the URL are working as expected.
Now that you know the year and month number are the parameters, you can get started.
[image: ]
FIGURE 12-17: Confirming that the parameters in the URL actually work.


Note
The Importance of Knowing Your Parameters
You may notice that the Box Office Mojo web service only returns results when the name is all lowercase. Enter the following URL into your favourite web browser, and you get results:
www.boxofficemojo.com/month/may/2021
Entering the following URL, and you get nothing back:
www.boxofficemojo.com/month/May/2021
This is a good example of knowing what parameters the source database is expecting and in what form. In this case, the Box Office Mojo web service is clearly expecting lowercase month names. Now that you know that, you can make sure the month names you pass are lowercase.
Creating the base query
The best place to start is to create the base query. The base query is essentially the one that will pull the data you’re working toward. In this scenario, you create a query that pulls the table shown in Figure 12-16 from the Box Office Mojo website. Follow these steps:
1. Open a new Excel workbook, and then select Data ➪ Get Data ➪ From Other Sources ➪ From Web.
2. Enter a starting URL and then click OK. You can use the following URL:
www.boxofficemojo.com/month/january/2020
3. Use the Navigator pane to select the table containing the data you need (Table0 in this case), and then click the Transform Data button to open the Query Editor.
4. Use the Query Editor to apply any desired transformations.
Figure 12-18 illustrates a clean table that makes up the base query.
[image: ]
FIGURE 12-18: The clean base query.
5. Open the Advanced Editor window by clicking the View tab and selecting the Advanced Editor command.
6. Wrap the entire block of code with function tags, specifying that this function requires two parameters: YearNum and MonthName. Also replace the hard-coded year and month in the URL with each respective parameter.
Here’s the final syntax shown in Figure 12-19:
let TopMovies=(YearNum, MonthName) =>
let
Source = Web.Page(Web.Contents("www.boxofficemojo.com/
month/" &
MonthName & "/" & Number.ToText(YearNum) & "/")),
Data0 = Source{0}[Data],
#"Removed Other Columns" = Table.
SelectColumns(Data0,{"Rank", "Release", "Gross",
"Theaters", "Total Gross", "Release Date",
"Distributor"})
in
#"Removed Other Columns"
in TopMovies
[image: ]
FIGURE 12-19: Wrapping the starter code with function tags and specifying a YearNum parameter and a MonthName parameter.
7. Click Done to close the Advanced Editor.
8. In the Query Settings pane, change the name of the query in the Name input box. In this scenario, it’s fnGetTopMovies.
9. Click the Home tab of the Query Editor and click the Close & Load button.
You now have a fnGetTopMovies function, which can be used to pull web data from a custom function, and it’s ready to be used on all files in the target folder.
Creating the parameter query
The final step is to create the parameter query. To do so, you need a simple table that will serve as the feeder for your dynamic parameters.
Staying in the same workbook where you created fnGetTopMovies, create a table like the one shown in Figure 12-20.
[image: ]
FIGURE 12-20: Create a simple parameter table.
From here, follow these steps:
1. Place the cursor in the parameter table, and then select Data ➪ From Table/Range.
The Create Table dialog box opens.
2. Click OK to continue.
The Query Editor opens with the parameter table.
3. Click the Add Column tab, and then click the Custom Column command.
4. In the Custom Column dialog box, invoke the fnGetTopMovies function, passing the year and month fields as parameters (see Figure 12-21), and click OK.
Because you’re mixing data from the web with data from Excel (though the parameter table can hardly be considered data), Power Query initiates a yellow security bar asking you for more information on data-privacy settings.
[image: ]
FIGURE 12-21: Use the Custom Column action to invoke the function.
5. Click the Continue button inside the yellow security bar.
The Privacy Levels dialog box opens, as shown in Figure 12-22.
[image: ]
FIGURE 12-22: The combining of Excel and Web data triggers Power Query to ask about data privacy.
6. Select Public for both the Current Workbook option and the website. Click the Save button to confirm and save the privacy levels.
Power Query, at this point, imports data from the website based on the year and month in the parameter table.
7. The data imports as a table array, so click the green Table hyperlink.
Alternatively, you can click the Expand icon.
Now that you’re basically done, it’s time to think about where the query should be loaded. If you simply click the Close & Load button, Power Query outputs the final parameter query in its own worksheet. However, it would be more practical to have the parameter table and query results on the same worksheet. This way, you can edit the parameters and see the results without having to flip between worksheets.
8. Rather than click the Close & Load command button, click the drop-down arrow beneath the button and select the Close & Load To option.
9. In the Import Data dialog box, choose the Existing Worksheet option, ensuring that you select a cell beneath the parameter table. (See Figure 12-23.)
[image: ]
FIGURE 12-23: Choose to load the final query results under the parameters table.
10. Click the OK button to finalize the query (see Figure 12-23).
Figure 12-24 illustrates the final parameter query. Take a moment to think about what’s happening here. With this parameter query, you enter a year and a month and click Refresh (or press Ctrl+Alt+F5). Power Query then dynamically imports data back from the internet based on the parameters you entered — all without your having to enter more than three lines of M language syntax. Truly amazing.
[image: ]
FIGURE 12-24: The final parameter query provides an interactive mechanism to flexibly pull data based on dynamic parameters,
all with virtually no coding.
[bookmark: _Ref127768996]Ten Ways to Improve Power Pivot Performance
The word performance (as it relates to applications and reporting) is typically synonymous with speed — or how quickly an application performs certain actions such as opening within the browser, running queries, or filtering.
Because Power Pivot inherently paves the way for large amounts of data with liberal restrictions, it isn’t uncommon to produce reporting solutions that work but are unbearably slow. And nothing will turn your intended audience away from your slick new reports faster than painfully sluggish performance.
This module offers ten actions you can take to optimize the performance of your Power Pivot reports.
Limit the Number of Rows and Columns in Your Data Model Tables
One huge influence on Power Pivot performance is the number of columns you bring, or import, into the data model. Every column you import is one more dimension that Power Pivot must process when loading a workbook. Don’t import extra columns “just in case” — if you’re not certain you will use certain columns, just don’t bring them in. These columns are easy enough to add later if you find that you need them.
REMEMBER
More rows mean more data to load, more data to filter, and more data to calculate. Avoid selecting an entire table if you don’t have to. Use a query or a view at the source database to filter for only the rows you need to import. After all, why import 400,000 rows of data when you can use a simple WHERE clause and import only 100,000?
Use Views Instead of Tables
Speaking of views, for best practice, use views whenever possible.
Though tables are more transparent than views — allowing you to see all the raw, unfiltered data — they come supplied with all available columns and rows, whether you need them or not. To keep your Power Pivot data model to a manageable size, you’re often forced to take the extra step of explicitly filtering out the columns you don’t need.
Views can not only provide cleaner, more user-friendly data but also help streamline your Power Pivot data model by limiting the amount of data you import.
Avoid Multi-Level Relationships
Both the number of relationships and the number of relationship layers have an impact on the performance of your Power Pivot reports. When building your model, follow best practice and have a single fact table containing primarily quantitative numerical data (facts) and dimension tables that relate to the facts directly. In the database world, this configuration is a star schema, as shown in Figure 13-1.
TIP
Avoid building models where dimension tables relate to other dimension tables. Figure 13-2 illustrates this configuration, also known as a snowflake schema. This configuration forces Power Pivot to perform relationship lookups across several dimension levels, which can be particularly inefficient, depending on the volume of data in the model.
[image: ]
FIGURE 13-1: A star schema is the most efficient data model, with a single fact table and dimensions relating directly to it.
[image: ]
FIGURE 13-2: Snowflake schemas are less efficient, causing Power Pivot to perform chain lookups.
Let the Back-End Database Servers Do the Crunching
Most Excel analysts who are new to Power Pivot tend to pull raw data directly from the tables on their external database servers. After the raw data is in Power Pivot, they build calculated columns and measures to transform and aggregate the data as needed. For example, users commonly pull revenue and cost data and then create a calculated column in Power Pivot to compute profit.
So why make Power Pivot do this calculation when the back-end server could have handled it? The reality is that back-end database systems such as SQL Server can shape, aggregate, clean, and transform data much more efficiently than Power Pivot. Why not utilize their powerful capabilities to massage and shape data before importing it into Power Pivot?
Rather than pull raw table data, consider leveraging queries, views, and stored procedures to perform as much of the data aggregation and crunching work as possible. This leveraging reduces the amount of processing that Power Pivot will have to do and naturally improves performance.
Beware of Columns with Many Unique Values
Columns that have a high number of unique values are particularly hard on Power Pivot performance. Columns such as Transaction ID, Order ID, and Invoice Number are often unnecessary in high-level Power Pivot reports and dashboards. So, unless they are needed to establish relationships to other tables, leave them out of your model.
Limit the Number of Slicers in a Report
The slicer is one of the best new business intelligences (BI) features of Excel in recent years. Using slicers, you can provide your audience with an intuitive interface that allows for interactive filtering of your Excel reports and dashboards.
One of the more useful benefits of the slicer is that it responds to other slicers, providing a cascading filter effect. For example, Figure 13-3 illustrates not only that clicking on Midwest in the Region slicer filters the pivot table but that the Market slicer also responds, by highlighting the markets that belong to the Midwest region. Microsoft calls this behaviour cross-filtering.
[image: ]
FIGURE 13-3: Slicers work together to show relevant data items based on a selection.
As useful as the slicer is, it is, unfortunately, extremely bad for Power Pivot performance. Every time a slicer is changed, Power Pivot must recalculate all values and measures in the pivot table. To do that, Power Pivot must evaluate every tile in the selected slicer and process the appropriate calculations based on the selection.
Take this process a step further and imagine adding a second slicer: Because slicers cross-filter, each time you click one slicer, the other one changes also, so it’s almost as though you clicked both. Power Pivot must now respond to both slicers, evaluating every tile in both slicers for each calculated measure in the pivot. Adding a second slicer effectively doubles the processing time. Add a third slicer, and you triple the processing time.
In short, a slicer is generally bad for Power Pivot performance. However, as mentioned at the beginning of this section, the functionality that the slicer brings to Excel BI solutions is too good to give up completely.
You can help to mitigate performance issues by limiting the number of slicers in your Power Pivot reports. Remove slicers one at a time, testing the performance of the Power Pivot report after each removal. You’ll find that removing a single slicer is often enough to correct performance issues.
REMEMBER
Remove slicers that have low click rates. Some slicers hold filter values that, frankly, may never be utilized by your audience. For example, if a slicer allows your audience to filter by the current year or by last year, and the last year view is not often called up, consider removing the slicer or using the Pivot Table Filter drop-down list instead.
Create Slicers Only on Dimension Fields
Slicers tied to columns that contain lots of unique values will often cause a larger performance hit than columns containing only a handful of values. If a slicer contains many tiles, consider using a Pivot Table Filter drop-down list instead.
REMEMBER
On a similar note, be sure to right-size column data types. A column with few distinct values is lighter than a column with a high number of distinct values. If you’re storing the results of a calculation from a source database, reduce the number of digits (after the decimal) to be imported. This reduces the size of the dictionary and, possibly, the number of distinct values.
Disable the Cross-Filter Behaviour for Certain Slicers
Disabling the cross-filter behaviour of a slicer essentially prevents that slicer from changing selections when other slicers are clicked. This prevents the need for Power Pivot to evaluate the titles in the disabled slicer, thus reducing processing cycles. To disable the cross-filter behaviour of a slicer, select Slicer Settings to open the Slicer Settings dialog box, shown in Figure 13-4. Then simply deselect the Visually Indicate Items with No Data option.
[image: ]
FIGURE 13-4: Deselecting the Visually Indicate Items option with No Data disables the slicer’s cross-filter behaviour.
Use Calculated Measures Instead of Calculated Columns
Use calculated measures instead of calculated columns, if possible. Calculated columns are stored as imported columns. Because calculated columns inherently interact with other columns in the model, they calculate every time the pivot table updates, whether they are being used or not. Calculated measures, on the other hand, calculate only at query time.
REMEMBER
Calculated columns resemble regular columns in that they both take up space in the model. In contrast, calculated measures are calculated on the fly and do not take space.


Upgrade to 64-Bit Excel
The suggestion in this section is somewhat obvious. If you continue to run into performance issues with your Power Pivot reports, you can always buy a better PC — in this case, by upgrading to a 64-bit PC with 64-bit Excel installed.
Power Pivot loads the entire data model into RAM whenever you work with it. The more RAM your computer has, the fewer performance issues you see. The 64-bit version of Excel can access more of your PC’s RAM, ensuring that it has the system resources needed to crunch through bigger data models. In fact, Microsoft recommends 64-bit Excel for anyone working with models made up of millions of rows.
But before you hurriedly start installing 64-bit Excel, you need to answer these questions:
· Do you already have 64-bit Excel installed? You can find out by opening Excel and choosing File ➪ Account ➪ About Excel. A dialog box opens, specifying either 32-bit or 64-bit at the top.
· Are your data models large enough? Unless you’re working with large data models, the move to 64-bit may not produce a noticeable difference in your work. How large is large? A Power Pivot workbook with a file size upward of 40 megabytes is considered large. If your workbook is 50 or more megabytes, you would benefit from an upgrade.
· Do you have a 64-bit operating system installed on your PC? The 64-bit version of Excel will not install on a 32-bit operating system. You can find out whether you’re running a 64-bit operating system by searching for the text My PC 64-bit or 32-bit at your favourite search engine. You’ll see loads of sites that can walk you through the steps to determine your version.
· Will your other add-ins stop working? If you’re using other add-ins, be aware that some of them may not be compatible with 64-bit Excel. You wouldn’t want to install 64-bit Excel just to find that your trusted add-ins no longer work. Contact your add-in providers to ensure that they are 64-bit compatible. This advice includes add-ins for all Office products — not just Excel. When you upgrade Excel to 64-bit, you also must upgrade the entire Office suite.


[bookmark: _Ref127768999]Ten Tips for Working with Power Query
Over the past few years, Microsoft has added countless features to Power Query. It has truly become a rich tool set with multiple ways to perform virtually any action you can think of. This growth in functionality has paved the way to a good number of tips and tricks that can help you work more efficiently with your Power Query models.
This module presents ten of the more useful tips and tricks you can leverage to get the most out of Power Query.
Getting Quick Information from the Queries & Connections Pane
All the Power Query queries that live in a particular workbook can be viewed in the Queries & Connections pane. Choose Data ➪ Show Queries to activate the Queries & Connections pane.
In this pane, you can see some quick information about a query by simply hovering the cursor over it. You can see the data source for the query, the last time the query was refreshed, and a sneak peek of the data within the query. You can even click on column hyperlinks to peek at a particular column (see Figure 14-1).
[image: ]
FIGURE 14-1: Hover the cursor over a query to get quick information, including sneak peeks of column contents.
TIP
It’s always smart to reuse work wherever you can. Save time by duplicating the queries in your workbook. To do so, activate the Queries & Connections pane, right-click the query you want to copy, and then select Duplicate.
Organizing Queries in Groups
As you add queries to your workbook, your Queries & Connections pane may start to feel cluttered and disorganized. Do yourself a favour and organize your queries into groups.
Figure 14-2 illustrates the kinds of groups you can create. You can create a group only for custom functions or a group for queries sourced from external databases. You could even create a group where you store small reference tables. Each group is collapsible, so you can neatly pack away queries that you aren’t working with.
[image: ]
FIGURE 14-2: Queries can be organized into groups.
You can create a group by right clicking a query in the Queries & Connections pane and selecting Move To Group ➪ New Group. To move a query to an existing group, right-click the query in the Queries & Connections pane, hover over Move To Group, and then select the group in which you want to see the target query. Right clicking the group name will expose a set of options for managing the group itself.
Selecting Columns in Queries Faster
When dealing with a large table with dozens of columns in the Query Editor, it can be a pain to find and select the right columns to work with. You can avoid all that scrolling back and forth by choosing the Choose Columns command on the Home tab.
The dialog box shown in Figure 14-3 opens, showing you all available columns (including custom columns you may have added). You can easily find and select the columns you need.
[image: ] FIGURE 14-3: Use the Choose Columns command to find and select columns faster.
Renaming Query Steps
Every time you apply an action in the Query Editor, a new entry is made in the Query Settings pane, as shown in Figure 14-4. Query steps serve as a kind of audit trail for all the actions you’ve taken on the data.
[image: ]
FIGURE 14-4: Get in the habit of renaming applied steps.
Query steps are automatically given generic names like Uppercased Text or Merged Columns. Why not take the time to add some clarity on what each step is doing? You can rename your steps step by right clicking each step and selecting Rename.
Quickly Creating Reference Tables
A handful of columns in a data set always make for fantastic reference tables. For instance, if your data set contains a column with a list of product categories, it would be useful to create a reference table of all the unique values in that column.
Reference tables are often used to map data, feed menu selectors, serve as lookup values, and much more.
While in the Query Editor, you can right-click the column from which you want to create a reference table and then select Add as New Query, as shown in Figure 14-5.
[image: ]
FIGURE 14-5: Create a new query from an existing column.
A new query is created, using the table you just pulled from as the source. The Query Editor jumps into action, showing only the column, you selected. From here, you can use the Query Editor to clean up duplicates or remove blanks, for example.
Viewing Query Dependencies
On the View tab of the Power Query Editor window, you’ll see the Query Dependencies command. Clicking this command activates the Query Dependencies dialog (see Figure 14-6), where you see a diagram displaying each of the queries in your workbook. Queries that rely on other queries have a line connecting them. This feature comes in handy when adopting someone else’s workbook or even refreshing your memory about a workbook you worked on previously.
[image: ]
FIGURE 14-6: The Query Dependencies dialog box displays how each of your queries interacts with one another.
Truth be told, the utility of this feature is a bit limited. You can change the zoom and layout of the diagram, but you won’t be able to move the objects around. As far as printing goes, you’ll have to resort to screenshots, because Power Query doesn’t offer a print feature.
Setting a Default Load Behaviour
If you’re working heavily with Power Pivot and with Power Query, chances are good that you load your Power Query queries to the Internal Data Model most of the time.
If you’re one of those analysts who always loads to the Data Model, you can tweak the Power Query options to automatically load to the Data Model.
Choose Data ➪ Get Data ➪ Query Options to open the dialog box shown in Figure 14-7. Select Data Load in the Global section, select the Specify Custom Default Load Settings option button, and then select the Load to Data Model check box. This enables the options to load to the worksheet or Data Model by default.
[image: ]
FIGURE 14-7: Use the Global Data Load options to set a default load behaviour.
Preventing Automatic Data Type Changes
One of the more recent additions to Power Query is the ability to automatically detect data types and to proactively change data types. This type of detection is most often applied when new data is introduced to the query.
For instance, Figure 14-8 shows the query steps after importing a text file. Note the Changed Type step, which was automatically performed by Power Query as part of its type of detection feature.
Although Power Query does a decent job at guessing what data types should be used, applied data type changes can sometimes cause unexpected issues.
[image: ]
FIGURE 14-8: Power Query automatically adds a step to change data types when data is imported.
Some veterans of Power Query, frankly, find the type of detection feature annoying. If data types need to be changed, they want to be the ones to make that determination.
If you’d rather handle data type changes without help from Power Query’s type detection feature, you can turn it off.
Choose Data ➪ Get Data ➪ Query Options to open the dialog box shown in Figure 14-9. Select Data Load in the Current Workbook section and then deselect the option to automatically detect column types and headers for unstructured sources.
[image: ]
FIGURE 14-9: Disabling the type detection feature.
Disabling Privacy Settings to Improve Performance
The privacy-level settings in Power Pivot (explored in Module 11) are designed to protect organizational data as it gets combined with other sources. When you create a query that uses an external data source with an internal data source, Power Query stops the show to ask how you want to categorize the data privacy levels of each data source.
For most analysts, who deal solely with organizational data, the privacy level settings do little more than slow down queries and cause confusion.
Fortunately, you have the option to ignore privacy levels.
Choose Data ➪ Get Data ➪ Query Options to open the dialog box shown in Figure 14-10. Select Privacy in the Current Workbook section and then choose the option to ignore privacy levels.
[image: ]
FIGURE 14-10: Disabling the privacy-level settings.
Disabling Relationship Detection
When you’re building a query and choosing Load to Data Model as the output, Power Query, by default, attempts to detect relationships between queries and creates those relationships within the Internal Data Model. The relationships between queries are primarily driven by the defined query steps. For instance, if you were to merge two queries and then load the result into the Data Model, a relationship would be automatically created.
In larger data models with a dozen or so tables, Power Query’s relationship detection can affect performance and increase the time it takes to load the Data Model.
You can avoid this hassle and even gain a performance boost by disabling relationship detection.
Choose Data ➪ Get Data ➪ Query Options to open the dialog box shown in Figure 14-11. Select Data Load in the Current Workbook section and then deselect the option to create relationships when adding loading to the Data Model.
[image: ]
FIGURE 14-11: Disabling relationship detection.

Page | 2 

image3.tmp
File Home Insert Draw Formulas  Data

B @ g

Page Layout

E | =& &

Manage | Measures KPIs Addto Detect | Settings
v v Data Model
ata Model | calculations Tables | Relationships

Review

View

Developer

Add-ins

Help

Power Pivot





image93.tmp
Create PivotTable

Choose the data that you wart to analyze
@ selecta toble or range.
Table/Range:  Transactions
O use an external datz source
Choose Connaction.

Connection narme
Us this workbook's Data Model

‘Choose where you want the PivotTable report to be placed
© New Worsheet
O exiing worisheet
Location:
R T S

dd fiis Gata to the Data Modeh

ok

Cancel





image94.tmp
Create PivotTable

Choose the data that you want to analjze
@ select a table or range
TebleRange: | employees
O Use an external data source
Chaose Connection

Connection name
O Use this workhook's Data Model

Choose where you vant the PivotTable report to be placed
@ new worksheat
O Eisting Worksheet
Location:

Choose whether you want to analyze mutiple tables.

Add ths data to the Data Model

ox

Cancel





image95.tmp
PivotTable Fields ~

Actve  All

Choose fields to add to report

Searcn

> B Empioees

> ETransactons

Drag fields between areas below:

Filters Columns.

Rows 2 Values

Defer Layout Update





image96.tmp
[searcn

L saies ey
O Invoice_Date
Sales Amount

O Contracted Hours

OO0 B o

Drag fields between areas below:

[ Defer Layout Update

Y Filters 1l Columns.
= Rows = Values
| sob_rite « | sumotsates Amount. +

Update





image97.tmp
Crezte Relationship

Pick the tables and columns you wantto use for this relationship

Table Column (Foreign):
Data Model Table: Transactions | [sales Rep

Related Table: Related Colurn (Primary)
Data Model Table: Employees =

Creating relationships between tables is necessary to show related data from different tables on the same report,

Manage Relationships..

oK Cancel





image98.tmp
Row Labels

SERVICE REPRESENTATIVE 1 210309.12
'SERVICE REPRESENTATIVE 2 9687391.47
SERVICE REPRESENTATIVE 3 610239.99
TEAMLEAD 1 19586.41
TEAMLEAD 2 171560.23
TEAMLEAD 3 75084.56
Grand Total 1077417178

PivotTable Fields X
Active Al

Choose fleI;to add to report: (‘é} v
Search jo,
> @ Employees

> [ Transactions

Drag fields between areas below:

Y Filters Il Columns
= Rows 2 Values
Job_Title ~ || Sum of Sales_ Amount ~





image99.tmp
Manage Relztionships

Status  Table 4

Related Lookup Table

Activate

Deactivate

Delete

Close





image100.tmp
Queries & Connections

Queries | Connections

3 connections

[£] ThisworkbookDataModel
Data Model

[£] WorksheetConnection_Internal Data Model.x sxIEmployees

n_Internal Data Model.xIsx!Transactio...





image101.tmp
Create PivotTable

Choose the data that you want to analyze
@smorrmmn
Tzble/Range:

@ Use an external data source]

Choose Connection...

‘Connection name:
O Use this workhook's Data Model

Choose vhere you want the PivotTable report to be placed
O New worksheat
@ Existing Worksheet

Location: | Sheet1!38$13

Choose whether you want to analyze mutiple tables.

[ add ths data o the bata Model

ox

Cancel





image102.tmp
Existing Connections ? X

Select a Connection or Table

Connections | Tables

Show: Al Tables -

This Workbook Data Model

Tables in Workbook Data Model
)

Chapter 5 Sample File.xls (This Workbook)
Transactions

TrarsadionMasten A 40868515

Employees

EmployaestsAsT508850

Open Cancal





image4.tmp
A B C D

3 4/12/2007 STDINV2251 BAKERSEMOODL
| Customers | InvoiceHeader [ InvoiceDetails

c D E
1 |involceNumber | uantity |unitcost |unitprice |
2 [orDsT1022 1 5020  110.05
3 |oRDsT1015 1 329055  6589.95

| Customers | InvoiceHeader | InvoiceDetails [

E F G
1 |customerid |customerName |address |country  [eny |state |zip
2 |DOLLISCO0001  Dollis Cove Resort 765 Kingway Canada Charlottetown  PEI CIAIW3
3 |GETAWAYIO001  Getaway Inn 234 E Cannon Ave. UsA Saginaw M 48605
Customers | InvoiceHeader | InvoiceDetalls | (1)

A B c
1 InvoiceDate |InvoiceNumber CustomeriD |
2 5/8/2005 ORDST1025 BAKERSEMO001





image103.tmp
I

PivotTable1

To build a report, choose fields from the
PivotTable Field List

PivotTable Fields

Active All

Choose fields to add to report:

Search

> EEmployees

> [ Transactions

Drag fields between areas below:

Y Filters 1l Columns

= Rows 3 Values





image104.tmp
[ From Tex/csy
[B From web
Data ~ | B From Table/Range

Draw  Page layout Formulas Data Re|

[® Recent Sources D [ Queries & Con
[P Bxisting Comnections S g

Refresh

Al 3

Queies & Connection|

> [E From SQL Server Database

> [‘a From Microsoft Access Database





image105.tmp
Navigator

pel
Select multiple items
Display Options ~ 2

4 Wi Facility Servicess.accdb [8]
[ Sales_By_Employee

[ CustomerMaster
Employee_Master

LocationMaster

ProductMaster

0

o

B PriceMaster
0o

D Test Comments
=]

TransactionMaster





image106.tmp
Navigator

[ Select multple items

Display Options +

4 Wi Fadility Servicess.accdb (6]
15 Sales By_Employee
VI CustomerMaster
¥/ 3 Employee_Master
08 Loc
[J @ PriceMaster
[ & ProductMaster

Master

[ Test Comments
[¥I B TransactionMaster

Selact Relatad Tables

5

2

TransactionMaster

Key

3

Branch_Number  Customer_Number

1 401612
2 s01612
3 s01612
4401612
5 s01612
5 s01612
7 a01612
5 s01612
5 s01612

10 401612

11201612

= [

Transform Data
Load

18
~
15
193
19
19
19

2

2

Cancel

Load To...





image107.tmp
Import Data

Select how you want to view this data in your workbook.
E O1able
13| @pivotTable Report)

O eivotchart
[ O only create Connection
Where do you want to put the data?
O isting worksheet:

=scs4

@ New worksheet

Add this data to the Data Model

Properties. oK Cancel





image108.tmp
PivotTable Fields

Active Al

Choose fields to 2dd 1o report:
[Searct

> 8 CustomerMaster 2
> EBEmployes Master 2

> B TransactionMester 2

Drag fields between areas below:

Filters Columns

Rows = Values

Defer Layout Update





image109.tmp
[Total Revenue] ~ fx [=[UnitPrice]*[Quantity]

| . nitP Total Revenue
1 ORDST1022 1 59.29 119.95
2 ORDST1015 1 329055 6589.95 6589.95
3 ORDST1016 10 35 34.95 349.5
4 ORDST1017 50 91.59 189.95 9497.5
5 ORDST1018 1 59.29 119.95 119.95
6 INV1010 1 674.5 1349.95 1349.95
7 INV1011 1 91.25 189.95 189.95
8 INV1012 1 303.85 609.95 609.95
9 ORDST1020 1 59.29 119.95 119.95





image110.tmp
Row Labels ~ |Sum of Total Revenue

Aaron Fitz Electrical

Adam Park Resort

Advanced Paper Co.

Advanced Tech Satellite System
American Science Museum
Associated Insurance Company
Astor Suites

Atmore Retirement Center
Baker's Emporium Inc.

Blue Yonder Airlines

Boyle's Country Inns
Breakthrough Telemarketing
Castle Inn Resort

Central Communications LTD

45668.4
6238.5
131930.45
2278.7
6357.8
1299.8
174604.55
39.95
18418
26138.3
1829.85
91437
239.9
36816.2

PivotTable Fields
Active Al

Choose fields to add to report:
Search

- [ InvoiceDetails
[ InvoiceNumber

[ Quantity
[J unitCost
[ unitprice
Total Revenue





image111.tmp
Home  Design  Advanced
sBey 5 paste Append [‘ |_] D 1o [H Data Type : Currency "
0, e 3 & L8 liF b

Paste Replace Format : Currency ~
Paste From From Data From Other  Existing Refresh  PivotTable

. " ®
E copy Database * Service~ Sources Comnections - $-% > 4%
Clipboard Get External Data Formatting

[Total Revenue] ~ fx [=[Unitprice]*[Quantity]

P! [-] Total Revenue

1

1 ORDST1022 59.29 119.95
2 ORDST1015 1 329055 6589.95 $6,589.95
3 ORDST1016 10 35 34.95 $349.50
4 ORDST1017 50 91.59 189.95 $9,497.50
5 ORDST1018 1 59.29 119.95 $119.95
6 INV1010 1 6745 1349.95 $1,349.95
7 INV1011 1 91.25 189.95 $189.95
8 INV1012 1 303.85 609.95 $609.95





image112.tmp
[Gross Margin]  ~ fx :[Tutal Revenue]-([UnitCost]*[Quantity])

1 ORDST1022 59.29 119.95 $119.95

2 ORDST1015 1 3290.55 6589.95 $6,589.95 3299.4
3 ORDST1016 10 35 34.95 $349.50 -0.5
4 ORDST1017 50 91.59 189.95 $9,497.50 4918
5 ORDST1018 1 59.29 119.95 $119.95 60.66
6 INV1010 1 674.5 1349.95 $1,349.95 675.45
7 INV1011 1 91.25 189.95 $189.95 98.7
8 INV1012 1 303.85 609.95 $609.95 306.1
9 ORDST1020 1 59.29 119.95 $119.95 60.66
10 ORDST1021 1 59.29 119.95 $119.95 60.66





image5.tmp
Create Table ? X

Where is the data for your table?
SAS1:5GS103
My table has headers

o ][ cmea





image113.tmp
Blef=[v[o]n]a[w]~]=]

InvoiceN 2 B Quantity ﬂ

ORDST1022
ORDST1015
ORDST1016
ORDST1017
ORDST1018
INV1010

INV1011

INV1012

ORDST1020
ORDST1021

1
1
10
50

PR R e e

59.29
3290.55
35
91.59
59.29
674.5
91.25
303.85
59.29
59.29

119.95
6589.95
34.95
189.95
119.95
1349.95
189.95
609.95
119.95
119.95

Total Revenue

STIgws]

Create Relationship.
Navigate to Related Table
Copy

Insert Column

Delete Columns
Rename Column
Freeze Columns
Unfreeze All Columns
Hide from Client Tools
Column Width...

Filter

Description..





image114.tmp
w|~[ofn]sw[n]m]

InvoiceN..
ORDST1022
ORDST1015
ORDST1016
ORDST1017
ORDST1018
INV1010
INV1011
INV1012

20 Bl B B

1

59.29
3290.55
35
91.59
59.29
674.5
91.25
303.85

119.95
6589.95
34.95
189.95
119.95
1349.95
189.95
609.95





image115.tmp
Insert Function ? X

Select a category:
Al v
Select a function:

~
ACOS

ACOSH

ACOT

ACOTH

ADDCOLUMNS

ADDMISSINGITEMS v

ABS(Number)
Returns the absolute value of a number.

oK Cancel





image116.tmp
"« =sum([Gross Margin])

UnitCost 8| UnitPrice K| T

Calculated Column 1

59.29 119.95 60.66 928378.069999998

1 3290.55 6589.95 56, 3299.4 928378.069999998
10 35 34.95 4 -0.5 928378.069999998
50 91.59 189.95 9,4 4918 928378.069999998

1 59.29 119.95 1 60.66 928378.069999998
1 674.5 1349.95 51 675.45 928378.069999998
1 91.25 189.95 $189.95 98.7 928378.069999998
1 303.85 609.95 $609 306.1 928378.069999998





image117.tmp
5/8/2018 12:00:00 AM ORDST1025
4/12/2020 12:00:00 AM STDINV2251
5/8/2018 12:00:00 AM ORDST1026
4/12/2020 12:00:00 AM STDINV2252

5/7/2017 12:00:00 AM ORD1002
2/10/2017 12:00:00 AM INV1024
2/15/2017 12:00:00 AM INV1025
5/10/2017 12:00:00 AM _ORDPH1005

@ [S[oon]sw]n ]

BAKERSEMO0001
BAKERSEMO0001
AARONFIT0001
AARONFIT0001
METROPOL0O001
AARONFIT0O001
AARONFIT0001
LECLERC0001





image118.tmp
InvoiceDate
5/8/2018 12:00:00 AM
4/12/2020 12:00:00 AM
5/8/2018 12:00:00 AM
4/12/2020 12:00:00 AM
5/7/2017 12:00:00 AM
2/10/2017 12:00:00 AM
2/15/2017 12:00:00 AM
5/10/2017 12:00:00 AM

ﬂ InvoiceNu

ORDST1025
STDINV2251
ORDST1026
STDINV2252
ORD1002
INV1024
INV1025
ORDPH1005

BAKERSEMO0001
BAKERSEMO0001
AARONFITO001
AARONFIT0001
METROPOL0001
AARONFITO001
AARONFITO001
LECLERC0001

2018
2020
2018
2020
2017
2017
2017
2017

VNN GOS0

Feb
Feb
May





image119.tmp
PivotTable Fields

Acive Al

Choose fields to add to report:
Seaich
[ involceHeader
O InvoiceDate
[ invoiceNumber
O customeriD
[ Year
Month
[l Month Name





image120.tmp
[Row Labels
 Aaron Fitz Elactrical
Apr
Feb
Jan
Mar
May
Sep
= Adam Park Resort
Apr
Jan
May
Sep

= Advanced Paper Co.

Apr
Jan

| Average of Total Revenue

$1,121.88|
$826.75
$396.49
$248.14
$1,829.83
$59.95

$830.92
$599.50
$59.90|
$2,399.95

$13,049.13
$359.80

= Advanced Tech Satellite Systam

Apr
Jul
May

$49.95
$138.24
$949.75





image121.tmp
Sort by Column ? X

Select the column to be sorted and the column by which it s sorted (for example, sort the month name by
the month number). Click the link below to learn how to sort by a column from a different table.

Sort By
Column Column
Month Name v Month v

How to sort by a column from a different table? OK Cancel





image122.tmp
Row Labels
= Aaron Fitz Electrical

- | Average of Total Revenue

Jan $396.49
Feb $826.75
Mar $248.14
Apr $1,121.88]
May $1,829.83
Sep $59.95
Adam Park Resort
Jan $599.50
Apr $839.92
May $59.90
Sep $2,399.95
= Advanced Paper Co.
Jan $359.80
Apr $13,049.13
Advanced Tech Satellite System
Apr $49.05
May $949.75
Jul $138.24





image6.tmp
Add-ins  Help  Power Pivot  Table Design|

Table Name: Summarize with PivotTable
|customers B} Remove Duplicates i
€ Resize Table | G Convert to Range S|

Properties Tools





image123.tmp
Custome... T B C rerName i t Amount Bl Ac
DOLLISCO0001  Dollis Cove Resort 11% 765 Kingway

1

2 GETAWAYI0001 Getaway Inn 10% 234 E Cannon Ave.

3 HOMEFURNO0O1 Home Furnishings Limited 25% 234 Heritage Ave.

4 JOHNSONK0001 Johnson, Kimberly 12% 5678S. 42nd Ave.

5 KELLYCONOOO1  Kelly Consulting 5% 123 Yeo

6 KENSINGTO001 Kensington Gardens Resort 13% 12345 Redmond Rd
7 HAMPTONV0001 Hampton Village Eatery 20% 234 Hampton Village
8 HEALTHYCO001  Healthy Concepts 11% 1234 Westown Road





image124.tmp
ORDST1022
ORDST1015
ORDST1016
ORDST1017
ORDST1018
INV1010
INV1011
INV1012
ORDST1020
10 DRDST1021
11 INV1015

s

wlw N o

X jx |[RELATED(
RELATED ColumnName

N

n Customers[City]
’_‘ Customers[Country]

[77] customers[CustomeriD]

[77] Customers[CustomerName]
[77] Customers[Discount Amount]
77 Customers[State]

[77] Customers|zip]

[77] invoiceHeader[CustomeriD]
[7]] InvoiceHeader[InvoiceDate]
77 InvoiceHeader[InvoiceNumber]





image125.tmp
FRELATED(Customers[Discount Amount])
Il [-] Discount%
1 59.29 119.95 $104.36
1 329055 6589.95 $5,865.06
10 35 34.95 $318.05
50 91.59 189.95 $8,927.65
1 59.29 119.95 $109.15
1 6745 1349.95 $1,147.46
1 91.25 189.95 $157.66
1 303.85 609.95 $579.45





image126.png
Measure

Tsblename: [InvoiceDetails

Messure name: 2020 Cost

Description: [
Fomule: | fr Check formula
=CALCULATE(

SUM(invoiceDetails{UnitCost]).
YEAR(InvoiceHeader(invoiceDate])-2020

Decimal places:
Use 1000 separator ()

°

o«





image127.tmp
2020 Cost
$3,239
$1,244

$56
$225
$324
$14,060
$1,859
$2,525
$3,436
$2,906
S8

$59
$35,461

2019 Cost
$7,922
$1,308

$56
$186

$16,791
$6,781

$3,020
$9,069

$2,233

2020 vs 2019
($4,683)
(564)
$0

$39
$324
($2,731)
$1,859
($4,256)
$416
($6,163)
$8

$59
$33,228

PivotTable Fields

Active  All

Choose fields to add to report:

Search

[ Discount%

[ Discounted Revenue
Jx 2020 Cost
fx2019 Cost

[V fx2020vs 2019





image128.tmp
Manage Measures

New
Measure Formula
2019 Cost CALCULATE( SUM(InvoiceDetails[UnitCost]). YEAR InvoiceHead:
2020 Cost CALCULATE( SUM(invoiceDetails[UnitCost).
2020 vs 2019 [2020 Cost}-{2019 Cost]

Close





image129.tmp
11

B
Month Name

© o N AW

Jan 1
Feb

Mar

Apr

May

Jul

Sep

Grand Total

fr | =CUBEMEMBER("ThisWorkbookDataModel","[InvoiceHeader].[Month Name].&[an]")

C D E F
Sum of UnitCost Sum of Quantity Sum of UnitPrice

$44,072 420 $88,034
$65,118 316 $130,813
$116,467 816 $233,011
$117,605 1198 $230,592
$165,886 476 $331,537
$477 20 $999
$1,251 3 $2,520
$510,875 3249 $1,017,506





image130.tmp
Convert to Formulas

By default, conversion permanently replaces PivotTable data values, row labels, and column labels by substituting formulas
for them. If report flters exist, they remain so that you can stil filter data.

Selecting Convert Report Filters also permanently replaces existing report filters by substituting formulas for them,

removing the ability to filter data.

onvert Report filters|

Convert

Cancel





image131.tmp
~ Ji | =sumica:ce)

L B ] C [ b L E |
Month Name  Sum of UnitCost Sum of Quantity ~ Sum of UnitPrice
Jan $44,072 420 588,034
Feb 565,118 316 5130,813
Mar $116,467 816 $233,011
Quartertotals [ ssese]  sism2 sasiess
Apr $117,605 1198 $230,592
May $165,886 476 $331,537
Jul 5477 20 $999





image132.tmp
Measure

Table name: Sales

Measure name:  [Total Revenue

Description: [

Fomula: | fx Check formula

-SUM(Sales[SalesAmount])

Formatting Options.

Category:

General ~
Currency
Date v

Format:
Decimal places

¥ Use 1000 separator ()

Decimal Number





image7.tmp
Home | Design Advanced

e Append
i paste Replace

=
Clipbard

[Customer... ~

& &

From  From Data From Other

Database ~ Service ~

3

Existing

W (2

Sources Connections

Get External Date

I

Refresh  PivoTable

] =

Format

$-% >

Formatting

20 o0
8 %

DOLLISCO0001
GETAWAYI0001
HOMEFURNO...
JOHNSONKOO...
KELLYCONOOD1

KENSINGT0001
HAMPTONVO...
HEALTHYC0001
LECLERCO001

10 LEISURETO00L
11 LONDONBEOO.

0l <o e e w e

Dollis Cove Resort
Getaway Inn
Home Furnishing...
Johnson, Kimberly
Kelly Consulting

Kensington Garde...

Hampton Village ..
Healthy Concepts.

LeClerc & Assodia...
Leisure & Travel C...

Londonberry Nur

765 King...
234 Can..

234 Herit...
56785.4...

123 Yeo

12345 Re...

234 Hamp_..
1234 Wes...
4321 Wes...

City 123
987 Porta.

USA
Australia
USA

USA

USA
Canada
Australia
New Zeala.

Charl... PEI
sagin.. MI
Midla... MI
Rockf... IL
Melb... VIC
Milw...
Sprin.. 1L
West ... 1A
Mont... PQ
Sydney  NSW.
Auckl.

Customers





image133.tmp
Total Revenue
29,358,677.22

PivotTable Fields

Active Al

Choose fields to add to report:

Search

LJ rreignt
[J RegionMonthiD
[ fx Total Revenue





image134.tmp
Table name: Sales

Measure name:  [Total Units

Description: [

Fomula: | fx

Check formula

-SUM(Sales[OrderQuanity])

Formatting Options

Category:

General
Number
Currency
Date

| Fomat:

V| ¥ Use 1000 separator ()

Whole Number





image135.tmp
Measure

Table name: Sales

Measure name:  [Revenue per Unit

Description [

Formula: | f

Check formula

~{Total Revenue)/[Total Units]

Formatting Options

Category:

General
Number
Currency
Date

~ | Format:

Decimal places:

[V Use 1000 separator (.)

Decimal Number

=

o ] _ o





image136.tmp
Row Labels - Total Revenue Total Units
Australia 9,061,000.58 13,345
Canada 1,977,844.86 7,620
Central 3,000.83 20
France 2,644,017.71 5,558
Germany 2,894,312.34 5,625
Northeast 6,532.47 27
Northwest 3,649,866.55 8,993
Southeast 12,238.85 39
Southwest 5,718,150.81 12,265
United Kingdon  3,391,712.21 6,906

Grand Total ~ 29,358,677.22 60,398

Row Labels - Total Revenue Total Units
Accessories 700,759.96 36,092
Bikes 28,318,144.65 15,205
Clothing 339,772.61 9,101

Grand Total  29,358,677.22 60,398

Revenue per Unit
678.98
259.56
150.04
475.71
514.54
241.94
405.86
313.82
466.22
491.13
486.09

Revenue per Unit
19.42

1,862.42

37.33

486.09





image137.tmp
DAX Operators
Purp

Exampl

0 Parentheses are used to establish mathematcal  ([Measurel J+[Measure2)/*10
order of operations.

+ Mathematical operators are used to define the  [Measure1]+{Measure2]
operation to be performed.

- [Measure1}HMeasure2]

* [Measure1]*[Measure2]

7 [Measure1)/[Measure2]

~ [Measure1}\[Measure2]

- Comparison operators are used to evaluate the  [Measure1]=[Measure2]
contrast between values.

> [Measure1]<>[Measure2]

< [Measure1]>=[Measure2]

& Asingle ampersand is used to concatenate a “Totalis: " & [Measure1]
string of values together.

AND The AND logical operator is used o evaluate a [Measuret] >100 AND [Measure2] <200
condition between two expressions. DAX allows

3 the word AND or the use of two ampersands, They [Measure1] >100 && [Measure2] <200
both apply the same behavior.

or The OR logical operator can be used o evaluatea  [Measure1] >0 OR [Measure2] >0
condition between two expressions. DAX allows

1" the word OR or the use of two pipe characters,  [Measure1]>0 || [Measure2] >0
They both apply the same behavior.

NoT The NOT logical operation can be used toreturna  NOT (Measure1] = Measure2))

true or false based on a comparison to a defined
expression. DAX allows the word NOT or the use
of the exclamation point. They both apply the.
same behavior.

H{IMessurel] = [Measure2])





image138.tmp
Row Labels -' Sum of OrderQuantity Sum of UnitPrice

5072656
S070714
5058845
5072927
5071961
5074869
5064542
5061412
5062984
5064042
5060233
5058572

5054784
snsana?

NN SNSNSNSNSNSNSNSNSN®®®

2480.91
2434.92

691.91
1347.79
2406.93

115.92
2406.93
2429.93
2425.93
2399.23
2406.93

750.74

233.23
145 42





image139.tmp
Measure

?
Tablename:  [Sales
Measure name:  [Realized Sales
Description: [
Formula: | fx | Checkfomula
-Sum(Sales[OrderQuantity))* Sum(Sales[UnitPrice])
Formatting Options
~| Fomat: Decimal Number
Currency Decimal places (R
Date v
[V Use 1000 separator (.)
oK | Cancel





image140.tmp
Row Labels -! Sum of OrderQuantity Sum of UnitPrice Realized Sales

5072656
5070714
5058845
5072927
5071961
S074869
5064542
5061412
5062984
5064042
5060233
5058572
5054784

e

NN N NSNNSNNSNN®O©o0

2480.91
2434.92
691.91
1347.79
2406.93
115.92
2406.93
2429.93
2425.93
2399.23
2406.93
750.74
233.23

P

19,847
19,479
5,535
9,435
16,849
811
16,849
17,010
16,982
16,795
16,849
5,255
1,633





image141.tmp
Row Labels -~ Sum of OrderQuantity Sum of UnitPrice Realized Sales

Australia 13,345  9,061,000.58  120,919,052,799
Canada 7,620 1,977,844.86  15,071,177,849
Central 20 3,000.83 60,017
France 5,558 2,644,017.71  14,695,450,456
Germany 5,625 2,804,312.34  16,280,506,902
Northeast 27 6,532.47 176,377
Northwest 8,993 3,649,866.55  32,823,249,895
Southeast 39 12,238.85 477,315
Southwest 12,265 5718,150.81  70,133,119,712
United Kingdom 6,006 3,301,712.21  23,423,164,528

Grand Total 60,398  29,358,677.22 1,773,205,386,776





image142.tmp
Measure

Table name:

Sales

Measure name:  [[Realized PriceX]

Description:

Fomula:

fx Check formula

-Sumx(Sales. Sales[OrderQuantity] * Sales[UnitPrice])

Formatting Options

Category:

General

Currency
Date

| Fomat:

Decimal places:

[V Use 1000 separator (.)

Decimal Number





image8.tmp
D ore  oeon  Adwnced
i [ Paste Append Y T D j Data Type

pee & BB I

" ey | e T o M P (o> a8
clpbonrd . B

[Customer... ~ fx

1 DOLLISCO0001 Dollis Cove Resort 765 King...  Canada Chaﬂ C1A..

2 GETAWAYI0001 Getaway Inn 234ECan.. USA Sagin... MI

3 HOMEFURN Home Furnishin USA Midla... MI

4 JOHNSONKOO... Johnson, Kimberly USA Rockf... 1L

5 KELLYCONOOD1  Kelly Consulting 123 Yeo Australia Melb... VIC

6 KENSINGTO001 Kensington Garde... 12345Re... USA Milw... Wi

7 HAMPTONVO... Hampton Village... 234 Hamp... USA Sprin... 1L

& HEALTHYC0001 Healthy Concepts USA ‘West ..

9 LECLERCO001 LeClerc & Associa.. Canada Mont..

10 LEISURETO001 Leisure & Travel C. City 123 Australia Sydney  NSW

11 LONDONBEQO... Londonberry Nur 987 Porta. New Zeala... Aucl

Curtomers | imoicereader  InvolceDetalls





image143.tmp
Row Labels -  Realized Sales

[Realized PriceX]

Australia 120,919,052,799 9,061,001
Canada 15,071,177,849 1,977,845
Central 60,017 3,001
France 14,695,450,456 2,644,018
Germany 16,280,506,902 2,894,312
Northeast 176,377 6,532
Northwest 32,823,249,895 3,649,867
Southeast 477,315 12,239
Southwest 70,133,119,712 5,718,151
United Kingdom 23,423,164,528 3,391,712
Grand Total 1,773,205,386,776 29,358,677





image144.tmp
N oA W N =

9]
o
11

< D

|Market

Southeast
Southeast
Southeast
Southeast
Southeast
Southeast

|Southeast
| Southeast

~ | Customer
Trusted Catalog Store
Trusted Catalog Store
Trusted Catalog Store
Trusted Catalog Store
Trusted Catalog Store
Trusted Catalog Store
Trusted Catalog Store
Trusted Catalog Store

Calculate Sum of Sales Amount>>

Business Segment | ~ | Color ~ | Sales Amount | ~
Bikes Silver $6,120
Bikes Black $4,050
Bikes Black $6,075
Clothing White $46
Bikes Silver $2,040
Bikes Black $6,075
Bikes Silver $6,120
Bikes Silver $4,080





image145.tmp
A B © D E
1 Calculate Sum of Sales Amount>> $1,614,418
2
3 |Market ¥ | Customer Business Segment |-Y | Color ¥ |Sales Amount | ~
30 | Northeast Weekend Tours Bikes Red $4,374
31 |Northeast Weekend Tours Bikes Red $4,294
32 |Northeast Weekend Tours Bikes Red $2,147
33 |Northeast Weekend Tours Bikes Red $875
34 |Northeast Weekend Tours Bikes Red $839
35 |Northeast ‘Weekend Tours Bikes Red $419
36 |Northeast ‘Weekend Tours Bikes Red $839
|37 Northeast Weekend Tours Bikes Red $2.624





image146.tmp
CalendarYear = 2

2018

2019

2020

2021

‘ Category

Region -
Australia
Canada

France

Germany
Northeast

Northwest
Southeast
Southwest
United Kingdom

‘Bikes X

Total Revenue

1,483,890

437,981I_

597,334

Category = 'Bikes’
CalendarYear = 2021
Region = 'Canada’

696,270
2,295
736,276
5,384
1,086,774

Category ke:
CalendarYear = 2021
Region = 'Northwest'

722,973

Grand Total 5,769,177'

Category = 'Bikes'

Region ="All'

CalendarYear = 2021





image147.tmp
£ Customers

[ customarkey
£ Geographykey
) Name

[ BirthDate

£ Maritalstatus

[ Territory

] Territory Key

1 country
1 Group

[ Calendar
[T Calendarvear
[T CalendarQuarter

[T FiscalQuarter

[°S

[ sales

[ OrderDate

[ OrderDate Key

1 ProductKey

[ customarkey

£ salesTerritorykey

[ SalesOrderNumber
[ salesOrderLineNumber
1 OrderQuantity

[ UnitPrice

[ ExtendedAmount

] UnitPriceDiscountPct
£ DiscountAmount

[ productstandardcost
E] TotalProductCost

[ SalesAmount

B TaxAme

] Freight

1 ResionMonthiD

3 Products
[ status
[ subCategory

[ StartDate
[0 EndDate

il

[ ProductsubCate

[ ProductSubcs





image148.tmp
Region [~ |Total Revenue _Bike sales

Australia 92,754 5,832,708]

Canada 86,366 745,080,

Central 116 540

Clothing France 34,739 1,960,190
Germany 35,191 2,154,260

Components Northeast 304 3,99
Northwest 57,210 1,903,401

Southeast 425 6950

Southwest 74,294 2,904,731

United Kingdom 49,049 2,428,288,

Grand Total 430456 18,030,243

Category Region [~ [Total Revenue  Bike Sales|
- Australia 41546 5,832,708
Accessories Canada 320480 745,080
Eikes Central 132 540
[coting | France 16125 1,060,100
Germany 12,929 2,154,269

Components Northeast 106 3,006
Northwest 38393 1,993,491

Southeast 201 6,950

Southwest 47,654 2,904,731

United Kingdom 19,759 2,428,288

(Grand Total 216335 18,030,243





image149.tmp
Measure

Tablename: [Sales

Measure name:  [LowProfitSales

Description: |
Fomula: | /¢ | | Checkfomula

=CALCULATE(SUM(Sales[SalesAmount]).

FILTER(Products.
DIVIDE(Products[DealerPrice] Products[StandardCost])<1
)
)
Formatting Options
Category
General Format: [ Whole Number
Number
Currency
Date v Use 1000 separator ()

OK

Cancel





image9.tmp
Data Type
%]

4lsonatoz Y ’—|

T Autosum

Calculation
frea

Format zlmnuun
PivotTable Clear All Sortby  Find
- $°% > WaB focersot s coum
Formating Sort and Fiter Find
F7 Customers [ InvoiceHeader [ InvoiceDetal

[ customeriD

T CustomerName
[T Address

[ Country

[ InvoiceDate
[ InvoiceNumber
[ CustomerlD

[ InvoiceNumber
[ Quantity
[ UnitCost
[ UnitPrice





image150.tmp
File Home

B From Text/csv
G

[® From Web
Get
Data ~| E5 From Table/Range

From File

Y
_G From Database

m

From Azure

|ﬂ| From Power BI (Chevron)

Loy From Online Services

:gq From Other Sources

s

Insert  Draw

[® Recent Sources
[ Existing Connections

Formulas  Data

D! [T Queries & ¢}
K

Refresh
Ay R

Page Layout

Queries & Connec

D E F G
HH From Table/Range
I:té From Web N

I:?E From Microsoft Query





image151.tmp
From Web

® Basic Advanced

URL
http://finance.yahoo.com/q/hp?s=MSFT

oK

Cancel





image152.tmp
Navigator
Fe) Table View Wb View
Select multple items Table 0 o
Display Options = [ ™ o ) o
< W hitpyffinancey.. 8/17/2021 79139 29343 29108
FZ Document 8/16/2021 253,19 25081 2002
7 Table 0 8/13/2021 289.48 292.90 289.30
8/12/2021 286.63 289.97 286.34
&/11/2021 28721 288.66 285.86
8/10/2021 288.80 289.25 285.20
s/5/2021 75975 25155 25781
8/6/2021 288.51 289.50 28762
/52021 28688 2062 e
a/4/2021 28622 2759 2465
< >

loza  * Tmnﬂmr&mh Cancal





image153.tmp
Formula Bar

e o Adacomm v

E e a] m] 8 f), = oumeont- =
o A 2 M = ) g
. 2 [ achanced edtar 2l [ uso Frt R as Hoadlrs =
osea Roreh o R Marage Reduce Selt Grouwp Combine  Manage
Load ~  Preview - L Mana0e Colums~ Rows~  Column~ By 2 Replace values - parameters -
dlose Query sart Trarsform Parameters
> fe | - Table.TransfornColunnTypes(Datad, {{"Date”, type v Query Settings X
. (O] oate - % open - o8 righ
£ « PROPERTIES
5 |1 w/17/2021 29239 29343
<] A Neme
2 #/16/2021 29215 20482 o
3 #/13/2021 2858 20290
4 8/12/2021 28553 28957 ALBeoLe
5 8/1/2021 267.21 28806  APPLIED STEPS
6 8/10/2021 26830 20925
Source
7 /02021 20975 20155 ;
Navigation
1 28851 28950
s /67202 v || cranged ype
) /a/2021 29538 w903

Preview Pane Query Settings




image154.tmp
olow|~lo|u|sfw|n||[H

=

DR e copy

293.43
294.82
292.50
289.97
288.66
289.25
291.55
289.50
289.63
287.59

287.23

s
x

240

Remove Columns
Remove Other Columns

Add Column From Examples...

Remove Duplicates
Remove Errors

Replace Values...
Fill

Change Type
Transform

Merge Columns

B Close* -
19217
194.60
192.85

Decimal Number
Currency

Whole Number
Percentage

Date/Time
Date

Time

Date/Time/Timezone





image155.tmp
Copy $ High -1$

i % Remove Columns 202.43

E Remove Other Columns 291.82

3 T4 Add Column From Examples. 292.90

4 Remove Duplicates 289.97|

5 282.66
Remove Errors

G 4, Replace Values. 289.25

U Fill ) 201.55

] 289.50
Change Ty ,

9 oo e 20969
Transform ,

10 287.59

" Merge Columns "





image156.tmp
:gw‘mumm‘awm_

bl

=

8/17/2021
8/16/2021
8/13/2021
8/12/2021
8/11/2021
8/10/2021
8/9/2021
8/6/2021
8/5/2021
8/4/2021
8/3/2021
8/2/2021
7/30/2021
7/29/2021

o~

w @

Remove N
Remove Other Columns
Duplicate Column

Add Column From Examples...

Remove Duplicates
Remove Errors

Change Type ,

Transform »

Replace Values...
Replace Errors...

Create Data Type
Group By... /





image10.tmp
[ Customers

=) Cnnomerﬂame!
|

Address

[ Country
1 citw

EZ InvoiceHeader

[T InvoiceDate

T InvoiceNumber

g istomerlD





image157.tmp
- 8 Copy

Remove

Jors

Remove Errors

Change Type

Transform

o~

v ®

Group By...
Fill

Remove Other Columns
Duplicate Column
B Add Column From Examples...

Remove Duplicates

Replace Values..
Replace Errors...

Create Data Type

Year

Quarter

Month

Week

Day

Text Transforms

Week of Year
Week of Month
Start of Week
End of Week





image158.tmp
Select how you want to view this data in your workbook.
F @ Table
i3] O pivotTable Report
15 O pivotchart
[i O Only Create Connection
Where do you want to put the data?

O exi

=$B$1

ing worksheet:

>

® New worksheet

[] Add this data to the Data Model

Properties oK Cancel





image159.tmp
A B < D E
1 3 1igh B Low B = =
2 |8/17/2021 293.43 291.08 292.86 8/15/2021
3 |8/16/2021 294.82 290.02 294.6 8/15/2021
4 8/13/2021 292.9 289.3 292.85 8/8/2021
5 18/12/2021 289.97 286.34 289.81  8/8/2021
6 8/11/2021 288.66 285.86 286.95 8/8/2021
7 |8/10/2021 289.25 285.2 286.44 8/8/2021
8 | 8/9/2021 291.55 287.81 288.33  8/8/2021
9 | 8/6/2021 289.5 287.62 289.46 8/1/2021
10 8/5/2021 289.63 286.1 289.52 8/1/2021
11 8/4/2021 287.59 284.65 286.51 8/1/2021
12 8/3/2021 287.23 284  287.12  8/1/2021
13| 8/2/2021 286.77 283.74 284.82 8/1/2021
14 /7/30/2021 286.66 283.91 284.91 7/25/2021
15 7/29/2021 288.62 286.08 286.5 7/25/2021
16 |7/28/2021 290.15 283.83  286.22 7/25/2021
17 |7/27/2021 289.58 282.95  286.54 7/25/2021





image160.tmp
Query Settings

4 PROPERTIES
Name
Tabe 0

All Properties

4 APPLIED STEPS.

Source
Navigation
Changed Type
Changed Type1
Removed Other Columns
Removed Errors
Duplicated Column
Renamed Columns
 Calculated Start of Week





image161.tmp
4 APPLIED STEPS

Source
Navigation
Changed Type
Changed Type1
Removed Other Caliimne
Removed Erro Edit Settings
Duplicated Cg =l Rename
Renamed Coly X Delete
X Calculated Sta Delete Until End

Insert Step After

A Move before
Vv Move after

Extract Previous





image162.tmp
Queries & Connections Tox%

Queries | Connections

1 query

0z

x
B

F=]
&
By
@
&

=
z

1]

Edit
Delete

Rename

Refresh

Load To.

Duplicate

Reference,

Merge

Append

Export Comection ile.

Move To Group »
ove Up





image163.tmp
TABLE 8-1 Column-Level Actions
Action Purpose
Remove Remove the selected column from the Power Query data. Yes
Remove Other  Remove all non-selected columns from the Power Query data.  Yes
Columns
Duplicate Column  Create a duplicate of the selected column as a new column No
placed on the far right end of the table. The name given to the
new column is Copy of X, where X s the name of the original
column.
Add Column from  Similar to Excels Flash Fil feature, this command creates data  Yes
Examples in.a new column from examples you provide. Power Pivot
auomarically fils in data when it senses a pattern.
Remove Remove all rows from the selected column where the values  Yes
Duplicates duplicate eariier values. The row with the first occurrence of a
value isn't removed.
Remove Errors  Remove rows containing errors in the selected column. Yes
Change Type Change the data type of the selected column to any of these  Yes
types: Binary, Date, Date/Time, DatefTime/Timezone, Duration,
Number, Currency, Decimal Number, Whole Number, Percent.
age, Text, Time, or Using Locale (which localizes data types o
the country you specify).
Transform Change the way values in the column are rendered. Youcan  Yes

choose from the following options: Lowercase, Uppercase,
Capialize Each Word, Lef;, Trim, Clean, and Length. f the val-
ues i the column are date/time values, the options are Dat,
Time, Day, Month, Year, or Day of Week. I the values in the
column are number values, the options are Round, Absolute
Velue, Factorial, Base-10 Logarithm, Natural Logarithm, Power,
and Square Root.





image164.tmp
Replace Values.

Replace one value in the selected column with anather speci
feduane,

s

ReplaceErors

Repiace unsghly rro vaueswit your . randier e

e

Crame DaaTyoe

Stores mulipl columas o Gaa n one column 25 metadata,
loving 4 t xposs il he a2t o et winGus KNE Up
Space in your worksheet Exceformalas can neract wih
Chese e daca types o expose th sored dat wiin.

e

Grow sy hgerega dat by row valuss For examp youcan gy 1e:
e and tner count the umir f e i ssch st o
Sumthe populaion o eachsate

El Filempey cels n the column wih he vale of hefscon. Yes.
‘emptycell. You havethe opton o il upor il down

Unpivr ther Transpese the unselecid columns fom column orenad 0 Yes

Catmnz rou orented o ice vers.

UnpivorSelecied Transpese theseectedcotumns from column oriened row_ Yes

otz orinted or s varea

Rename. Renams t seaced courn 22 name you sy, o

= Move the seeced cormn 2 2 aiferen ocaion e be. Yez
Youhave these chacesfor ming he colum: Lek Right To
Beginning and ToEnd

DritDown, Navgate t he conantsof e cobmn. Tz oton cuzed | No
with ables that contain metadac rpresenting smbedded
informason.

2k 25 Neow Query Createa new auery wit the contncof e column, byrefer o,
‘ning hecrginalquery n the new one. The name of th new
queryishe same a5 the column header of the seleced
s

Spi Column (R Spitcthevaue o  singlecolumno o or more columes, o

Bonont) based on a number ofcharacars o  given delmiar uch a5
 comma semiolon or 6.

Merge Column Merge e values f oo or more columns o  single column_ Yes

(inbononl)  tha concans  spcified dlimitr, such 2 2 comm, smico:

lon,ortab.





image165.tmp
SN ]

i}

Copy Entire Table
Use First Row as Headers

Add Custom Column..
Add Column From Examples..
Invoke Custom Function..
Add Conditional Colum
Add Index Column

Choose Columns...
Keep Top Rows...
Keap Bottom Rows.
Keep Range of Rows..

Keep Duplicates
Keep Errors

Remove Top Rows...
Femove Eottom Rovs..
Remove Altemate Rovs..
Remove Duplicates
Remove Errors

Merge Querics..

Append Queries..





image166.tmp
TABLES2

[res—

Table-Level Actions

Replace cach abl header name wih thevalues i e s row of each column.

Hescar:
i Cumtom | Insert new colmn er i e coumn of th i, e valoss i he s colurn a1
Golumn Getermined by te valueor formala you defne.

i Column Simlar o Excl e il esture s command craates daca i e colamn rom
From Example_ examplesyou povide. Power Pt automadeal s ndaca when ¢ senses  pazen.
A Conciconal  Insera new columithat contais he resuts of a specifed 17 TreN. _ELSE
Column srsment

i ncex Insert 2 new coumn conaining  sequental s of umoers sarting from 1,0, or
Column, another specfed value you define.

Crooss Comne

Cooss the columins you want o esp i he query resuls

Kesp Top Rows__ Remove all ut th top N rumber of rows You specy i number threshold
KesoBomom  Removs a1 bt e otom N mumber of ron. Y0u spechy the number frezhok.
Rowe

Kess Range o Remove all rows excep he onestht fallwihin a ange you speciy.

Rone

Koz Dupleate:_ Remove sl ut dupicaad rove.

KespErrors_ Removsall ut duplicated rows with error values.

RemoveTop | Removs the top N rows rom ne e

Rowe

[—
Rows

Remove i borom N rows from the e

Remove Ater Remousaternate rows from the abe, starng at e s row  remove and speciting
e Row 5 i f rows t rEmave and e bt f ro 9 1655,

Remore Remove allrowe whre e values i the seectad colurns uplcat saier vales. The
Duplcaces rowweh he fst oceurrence of a alue s st removed.

Remors Erors

Remove rows conaining arors i theselecied colums.

Merge Queries  Creace: new auery that mrges th curenttable wichanother query i e workbook
by matchingspeciied colums.
“Append Queries  Createanew query hat appends he resus of another query n the workbook 1o he

currens ok





image11.tmp
[ Customers
[0 CustomeriD
[ customerName
[ Address

1 Country
= cirv.

[ InvoiceHeader

[ customeriD

[ InvoicaDeta;

[ InvoiceNumber
1 Quantity
[ UnitCost
[ UnitPrice





image167.tmp
Navigator
0
Select multiple items
Display Options ~ 2

4 i ExcelWorkbook.xlsx [4]
I Dashboard
3 National Parks
B _xinm.Print_Area
E5] MyNamedRange

MyNamedRange

Column1

Great Smoky Mountains NP

Grand Canyon NP
Yosemite NP
Olympic NP
Yellowstone NP
Rocky Mountain NP
Cuyahoga Valley NP
Zion NP

<

Load

Column2

()
Column3 Colum
2001 2002
A
9197697 9316420
4104809 4001974
3368731 3361867
3416069 3691310
2758526 2973677
3139685 2988475
3123352 3217935,
2217779 2592545
>
Transform Data Cancel





image168.tmp
TextFile.txt

File Origin Delimiter
1252: Western European (Windows) ~ Tab

Column1
Johnny's in the basement
Mixing up the medicine
I'm on the pavement
Thinking about the government
The man in the trench coat
Badge out, laid off
Says he's got a bad cough
Wants to get it paid off
Look out kid

Load

Data Type Detection
Based on first 200 rows

Transform Data Cancel

&





image169.tmp
Navigator
Pl | Table04s (Page 39) 3
] Select multple tems Preview downloaded on Wednesday
Display Options - R industry iy way June
il 2020 2021
= ) A Toubiaie o0 10005
I Table0d5 (Page 40) Prp—— e
E= Table047 (Page 41) Miningandlogaing 421
7 Tableo4s (Page 42) construction 5374
@ pageont Manufacturing 330
1 Page002 (Durabicgoods 50|
Nondurabiegoocs 3258
K5 Page0ls Privateservice-providing 81771
[ pageovs Trade transportation anduties 2202
£ pageons Wholesalatrads 20 as1z e
0 pageos Retaitrade 12584
- v P
I Page0n7

wed || tansormoas | cancat





image170.tmp
Content
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary

Chapter 12.2ip .

Chapter 3.2ip
Chapter 5.2ip
c12.docx
fg1201.if
1g1202.4if
1g1203.tif
1g1204.if
1g1205.tif

Extension

2ip
Zip
«docx
i
i
i
i
Aif

Date accessed Date modified

9/8/2021 3:17:48 PM
9/8/2021 3:17:54 PM
9/8/2021 3:17:39 PM
9/8/2021 3:16:30 PM
9/8/2021 3:16:30 PM
9/8/2021 3:16:30 PM

9/8/2021 3:17:48 PM
9/8/2021 3:17:54 PM
9/8/2021 3:17:40 PM
9/8/2021 3:16:37 PM

9/8/2021 3:16:37 PM
9/8/2021 3:16:37 PM
9/8/2021 3:

9/8/2021 3:16:30 PM
9/8/2021 3:16:30 PM
9/8/2021 3:16:30 PM

6:37 PM

@ The data in the preview has been truncated due to size limits.

Date created
9/8/2021 3:17:47 PM
9/8/2021 3:17:53 PM
9/8/2021 3:
9/8/2021 3:16:30 PM

9 PM

9/8/2021 3:16:30 PM
9/8/2021 3:

:30 PM
9/8/2021 3:16:30 PM
9/8/2021 3:16:30 PM
9/8/2021 3:16:30 PM

Combine ~

Load

Attributes Fold|
Record C:\Users\hyzw\OneDrive
Record C:\Users\hyzw\OneDrive
Record jsers\hyzw\OneDrive
Record Ci\Users\hyzw\OneDrive
Record Ci\Users\hyzw\OneDrive
Record jsers\hyzw\OneDrive
Record C:\Users\hyzw\OneDrive
Record C:\Users\hyzw\OneDrive
Record C:\Users\hyzw\OneDrive
~| | Transform Data cancel





image171.tmp
fe || = Table.RemoveColumns(Source,{"Date accessed"})
Name [~] Extension  [~] Date modified [~] Date created
10 Must Have Excel VBA Skillsxds  xds 9/14/2012 6:50:20 AM 6/16/2014 7:33:17 AM
Backup of SlicersDemo.xik Ak 5/19/2011 5:01:06 AM 6/16/2014 7:33:17 AM
Basic Visualization Techniques.xisx . xisx 9/13/20125:53:34 AM 6/16/2014 7:33:18 AM 7 (Select All Col
Charting Best Practices.ppt Pt 7/25/2014 3:13:56 PM  7/25/2014 3:13:56 PM A Acchive
DataPig.odc Lodc 5/19/20116:09:54 AM 6/16/2014 7:33:18 AM 7l Compressed
Excel Keyboard Shortcuts.xis s 2/11/2009 2:43:10 AM 6/16/2014 7:33:18 AM 7] Content Type
Excel Macros xisx xlsx 3/26/2012 11:24:36 AM 6/16/2014 7:33:18 AM 7] Device
ExcelToPowerPoint.xism xism 9/14/2012 6:11:36 AM 6/16/2014 7:33:18 AM ! Directory
Forceenablemacros.xis s 9/26/2012 1:14:34 PM  6/16/2014 7:33:18 AM /! Encrypted
Interactive Reporting xis s 5/16/2011 1:19:48 AM 6/16/2014 7:33:18 AM /| Hidden
Interactive Reporting xisx xlsx 5/16/2013 7:24:28 AM 6/16/2014 7:33:18 AM. | Kind
Macro Charged PivotTablesxism  xism 6/26/2010 7:59:58 AM 6/16/2014 7:33:18 AM| 4 Normal
[ Northwind for DAY Tutariale iy wlex 12025015 79021 4 12179015 £2011 Ag 4| NotContentine





image172.tmp
[l uemtesicsy B feen cures P

[ From Web [} bisting Comections

IData + E5 From Table/Range

[ Fromee

[ from Dataeze

[ 2k From e

r ——
R ——
(X T——

- —

EZ Launch Power Query Editor..

LY —
) queyoptons

Refresh L
e

Queres & Comecions

Y-

m

From Microsoft Agcess Database

Y ——
[ e 50t s s
]

[ et xz e

:E From MySQL Database

[ o Pt e

Dﬁ From Sybase Database

T

2, e s ttn e





image173.tmp
% [hFromTed/CSV [ Recent Sources [, CRaueres xcom
s}

o B rom e [ sting Comecions | -7
IData +| EE From Table/Range A~

D Fom e N Gueris & Connecions|

rom >

T =

[ S

ﬁﬂ From Power Bl (Chevron) = From Azure Synapse Analytics.

[, romonineseies > (B rom e s s

; From Other Sources. > [5_. From Azure Blob Storage

- N Y

B7 Launch Power Query Editor... _': From Azure Data Lake Storage

[% Data Source Settings...

- Y





image174.tmp
& [BFomTe/csv [ Recent Souces [, Dawnese]

o | & FromWeb [yevisting Comectons | _ &5 5]
[sta«| 3 From TvlerRange e
[ fromene > -
TR rom patabase >
[ romanre > [ From tabiesmange
(] prompowersicrevon) | [ srom e

&"""“"‘"*"“ﬂ 4 :%anmkm«mm:q
B Q]

B comtmeauenes > B romoputaress

B Launch Pover Query Editor. ?30 v o i 075

[ Data Source settings... ~
E] Query Ogrions |k From Active Directory

Y

[ romonsc
?Q., From OLEDS





image175.tmp
Navigator

[] Select multiple items

Display Options ~

4 il Facility Services accdb 9]
Sales By_Employee
Employee Master
LocationMaster

Merge and Transform

North Sales

BEHA@AA

ProductMaster

Select Relaled Tables

©

b

>

Sales By Employee

Region
MDWEST
MIDWEST
MiDWEST
MIDWEST
MIDWEST
MIDWEST
MIDWEST
MIDWEST
MIDWEST

<

Market  Branch Number  Emg
DENVER 201605

A
DENVER 201605
DENVER 201605
DENVER 201605
DENVER 201605
DENVER 201605
DENVER 201605
DENVER 201605 v
DENVER 201605

>

~ | Transform Data cancel





image176.tmp
E

jame -G

F G H
jame [ Busine /i SumOrfd Suml|

v Queries & Connections

}, Queries | Connections

1.query

[ Sales_By_Employee

1,346 rows loaded.

MIDWEST DENVER 201605 160512 FILLIR v
MIDWEST DENVER | 201605 160512 FILUR

MIDWEST DENVER 201605 164264  DEYIL I
MIDWEST DENVER 201605 164264 DEYIL

MIDWEST DENVER 201605 164465  LEWRINSEN [
MIDWEST DENVER 201605 164465  LEWRINSEN [}
MIDWEST DENVER 201605 164466  HOFMIASTIR C
MIDWEST DENVER 201605 2522 BROEKS [}
MIDWEST DENVER 201605 2522 BROEKS r
MIDWEST DENVER 201605 52361 BIHRINS K
MIDWEST DENVER 201605 52361 BIHRINS K
MIDWEST DENVER 201605 5445 NISSLIR R
MIDWEST DENVER 201605 64006 HALL [
MIDWEST DENVER 201605 64006 HALL [
MIDWEST DENVER 202605 160152 KILLY. [





image12.tmp
Manage Relationships o
Create Edit Delet

Active  Table 1 - Cardinality Filter Direction __ Table 2

Yes InvoicaHeader [CustomerD] | Many to One (1) | << To InvoiceHasder | Customers [Customeri]





image177.tmp
Data source settings

Manage settings for the data sources used in queries.

O Data sources in current workbook ® Global permissions.

Search data source settings

1 competitveperformance.database.windows.net
#  competitveperformance.database.windows.net;bbopsuat

#  competitveperformance.database.windows.net;bbopsUAT
# gmwinsqlv00016

& nttpy//financeyahoo.com/a/hp

& nttpy//www.recipepuppy.com/api

B2 httpsy/bbops-uat.api.crm.dynamics.com/
EE httpsy/bbops-uat.crm.dynamics.com/

@ httpsy//bbops-uat.crm.dvnamics.com/

Edit Permissiors... | | Ciear Permissions| ~





image178.emf

image179.emf

image180.emf

image181.emf

image182.emf

image183.emf

image184.emf

image185.emf

image186.emf

image13.tmp
Edit Relationship

Select tables and columns that relate to one anofher.

invoiceDetails

InvoiceNumber Quanity UnitCost UnitPrice:
ORDST1022 5020 (11895
ORDSTI015 329055 6589 95
ORDST1016 35 3495
ORDST10 9159 18995
ORDST10. 5929 11895

invoiceHaadar

CustomerlD. InvoiceDate.
BAKERSEMO001 |5/8/2005 12:00:00 AM
BAKERSEMO001 |4/12/2007 12.00.00 AM LI
| AARONFITO001 [5/8/2005 12:00:00 AM
|AARONFIT0001 |4/12/2007 12:00:00 AM [0
METROPOLO0OT |5/7/2004 12:00:00 AM





image187.emf

image188.emf

image189.emf

image190.emf

image191.emf

image192.emf

image193.emf

image194.emf

image195.emf

image196.emf

image14.tmp
CustomerName ~ |average of Unitprice

Aaron i Eecrical s272 | PivotTable Fields v B
‘Adam Park Resort $690  Aciive ANl

Advanced Paper Co. $192 -

Advanced Tech Satellite System $63 | Choose fields 10 add to report: & -
American Science Museum $157.

Associated Insurance Company s325 | Searh ol
Astor Suites $1,583 > Customers A
Atmore Retirement Center 540

Baker's Emporium Inc. s601 > EfinvoiceDetalls

Blue Yonder Airlines 5856 > B InvoiceHeader

Boyle's Country Inns $610 2
Breakthrough Telemarketing $854

Castle Inn Resort $120 | Drag fields between areas below:

Central Communications LTD 5769,

Central Distributing $125 (TlEs o

Central llinois Hospital 51,705

Communication Connections s127

Computerized Phone Systems $120 Rows Z Valves

Contoso, Ltd. $8,912 CustomerName. ~ || Average of UnitPrice ~

Country View Estates $129





image197.emf

image198.emf

image199.emf

image200.emf

image201.emf

image202.emf

image203.emf

image204.emf

image205.emf

image206.emf

image15.tmp
Region (A [~

Sales Amount Segment |~]

Market Accessories Bikes __ Clothing__Components
Australia 23,974 1,351,873 43,232 203,791
Canada 119,303 11,714,700 383,022 2,246,255
Central 46,551 6,782,978 155874 947,448
France 48,942 3,597,879 129,508 871,125
Germany 35,681 1,602,487 75,593 337,787
Northeast 51,246 5,690,285 163,442 1,051,702
Northwest 53,308 10,484,495 201,052 1,784,207
Southeast 45,736 6,737,556 165,689 959,337
Southwest 110,080 15,430,281 364,099 2,693,568
United Kingdom 43,180 3,435134 120,225 712,588

Values Area





image207.emf

image208.tmp
Common Conversion Functions

Date Text Date. ToText()
Time Text Time. ToText ()
Number Text Number . ToText( )
Text Number Number .FromText()
Text Dates Date Date.FromText()

Numeric Dates.

Date Date.From()





image209.emf

image210.emf

image211.tmp
TABLE 10-2 Useful Transformation Functions

Excel Functi

LEFT([Text], [Number]) Text.Start([Text], [Number])

RIGHT( [Text], [Number]) Text.End([Text], [Number])

MID([Text], [StartPosition], [Number]) Text.Range( [Text], [StartPosition],
[Number] )

FIND([Find], [Within]) Text.Position0Of( [Within], [Find])

IF([Expression], [Resulti], [Result2]) if [Expression] then [Resulti] else
[Result2]

IFERROR( [Procedure], [FailResult]) try [Procedure] otherwise [FailResult]





image212.emf

image213.emf

image214.emf

image215.emf

image216.emf

image16.tmp
Regn T &) []

[sales Amount Segment |-

Market Accessories Bikes _Clothing_Components
[Rustralia 23974 1,351,873 43232 203,791

|Canada 119303 11,714,700 383,022 2,246,255
|central 46,551 6,782,978 155874 947,448

France 28942 3,597,879 129508 871,125

|Germany 35,681 1602487 75593 337,787

Northeast 51246 5,690,285 163442 1,051,702
[Northwest 53308 10484495 201,052 1,784,207
[southeast 25736 6,737,556 165689 959,337

[southwest 110080  15430,281 364,099 2,693,568
United Kingdom 43,180 3,435,134 120225 712,588

Row Area





image217.emf

image218.emf

image219.emf

image220.emf

image221.emf

image222.emf

image223.emf

image224.emf

image225.emf

image226.emf

image17.tmp
Column Area

Regn T &) []

[sales Amount Segment |-

Market | Accessories Bikes Clothing _Components
[Australia 23974 1351873 43,232 203,791

|Canada 119303 11,714,700 383,022 2,246,255
Central 46,551 6,782,978 155874 947,448

France 28942 3,597,879 129508 871,125

|Germany 35,681 1602487 75593 337,787

Northeast 51246 5,690,285 163442 1,051,702
Northwest 53308 10484495 201,052 1,784,207
|Southeast 25736 6,737,556 165689 959,337

|Southwest 110080  15430,281 364,099 2,693,568
United Kingdom 43,180 3,435,134 120225 712,588





image227.emf

image228.emf

image229.tmp
@ (Dap

Left Outer Right Outer Full Outer

] Bie _

Inner Left Anti Right Anti




image230.emf

image231.emf

image232.emf

image233.emf

image234.emf

image235.emf

image236.emf

image18.tmp
Filter Area

[Region @y [

[Sales Amount Segment |~

Market Accessories Bikes _Clothing _Components
[Australia 23974 1351873 43232 203,791

Canada 119303 11,714,700 383,022 2,246,255
Central 46,551 6782978 155874 947,048

France 18942 3597879 129,508 871,125

|Germany 35681 1,602,487 75503 337,787

Northeast 51246 5,690,285 163442 1,051,702
Northwest 53308 10484495 201,052 1,784,207
ISoutheast 45736 6737556 165689 959,337

|southwest 110080 15,430,281 364,099 2,693,568
United Kingdom 43180 3435134 120225 712,588





image237.emf

image238.emf

image239.emf

image240.emf

image241.emf

image242.emf

image243.emf

image244.emf

image245.emf

image246.emf

image19.tmp
File  Home Insert Draw Page Layout Formulas

=l =l ~ 71 D Shapes ~ me
is] & B O "X

&5 Icons. o] Sere
PivotTable Recommended Teble | Pictures
o PivotTables v ©@3DModels ~
Tables Hlustrations
a - S Region
A B €
1 [Region lsuhkeg\un Market Customer
2 North America  United States  Southeast Trusted Ca
3 |North America  United States  Southeast Trusted Ca
4 |North America United States  Southeast Trusted Ca
5 |North America _United States __ Southeast Trusted Cal





image247.emf

image248.emf

image249.emf

image250.emf

image251.emf

image252.emf

image253.emf

image254.emf

image20.tmp
Create PivotTable

Choose the data that you want to analyze
(@ select a table or range
Table/Range: |'Sample Data''SAS 1:5NS60920
O use an external data source
Choose Connection.

Connection name:
Use this workbook's Data Model

Choose where you want the PivotTable report to be placed
@ New Worksheet
O isting Worksheet
Location:
Choose whether you want to analyze muttiple tables.
[ Add this data to the Data Model

ok

Ccancel

>





image255.emf

image256.emf

image257.emf

image258.emf

image259.emf

image260.emf

image261.emf

image262.emf

image263.emf

image264.emf

image21.tmp
FvafTabled

Tobuld arsport, choose fislds
from the PhoiTable Field List

PivotTable Fields
Choose fields to add to report:

Search

[ Region

[] SubRegion

O Market

[ customer

[0 Business Segment.
L category

Drag fields between areas below:

Y Fiters 1l Columns

Rows = Values

Defer Layout Update





image265.emf

image266.emf

image267.emf

image268.emf

image269.emf

image270.emf

image271.emf

image272.emf

image273.emf

image274.emf

image22.tmp
Row Labels -]

Australia
Canaca

Certral

France
Germany
Northeast
Norifivest
Southeast
Southwest
United Kingdorn
Grand Total

PivotTable Fields
‘Choose fields to add to report:

Search

[0 Region

[ subRegion

V| Market

[ customer

[ Business segment
[ category

Drag fields between areas below:

&





image275.emf

image23.tmp
Row Labels - [Sum of Sales Amount

[Australia
(Canada

(Central

France
(Germany
Northeast
Norttwest
[Southeast
[Southwest
United Kingdom
Grand Total

1622869.422
14463280.15
7932851.609
4647454 207
2051647.728
6956673.913
12523062 94
1908318.256
18598026 98
4311126.856
81015212.09

PivotTable Fields
‘Choose fields to add ta report:

Search
O vistPrice
[T uniterice
[ orderaty
/| Sales Amount

More Tables.





image24.tmp
Row Labels
Australia
Accossories
Bikes
Clotting
Camponerts
=Canada
Accossories
Bikes
Clotting
Camponerts
= Central
Accossories
Bikes
Clotting

~ Isum ot Sales Amount
1622869.422
230730186
1951872827
432516124
205791 0636
14463280.15
1193026429
11714700 47
3850217229
2246255 419
7932851.609
46551 211
6782973 605
165675 9547

PivotTable Fields
Choose fields to add to report:

Searcn

L Region

[ subRegion
Market

[ customer

I Business Segment
LI category





image25.tmp
[Sum of Sales AColumn Labels | -
Row Labels | - [Accessories

lhustraia
(Canada
(Central

France
(Germary
Northeast
Northwest
[Southeast
Southwost
Uniter Kingdom
(Grand Total

239739160
119302 5428
46551 211
289415643
5661 4552
1245 8881
3308 4647
26736 1077
110079 6882
43180 2218
5780009525

IBikes
1951672 667
1171470047
6782975535
3697579394
1602487163
BRI0284 732
10484495 02
6737555913
1643028068
5435154 262
66827668 7

PivotTable Fields
Choose fields to add to report:

Search

[ Region
[ subRegion
(] Market

1 Customer
Drag fields between areas bel

Filters

Rows

Market ~

low:

Columns

Business Segment -

Values

Sum of Sales Amount ~





image26.tmp
A B c D E F
|Region North America_|7] B )

PivotTable Fields v
Sum of Sales Amount. Column Labels [~
Row Labels ~ Accessories Bikes Choose fields 1o add to repart &~
Canada 119026425 11714
Central AEB1 211 67628 Searcn el
Northeast 512458581 509021
Northest 533084547 10484 (4] Region v
Southeast TBIOT? BTT5 [ gupmegion
Southwost 1100795882 154501
Grand Total 426228.1926 568402 ﬁ :‘“:m

[7] Business Scgment

Drag fields between areas below:

Filters.

Region ~
Rows

Market -

Columns

Business Segment ~

3 Values

Sum of Sales Amount_~





image27.tmp
Region NorhAmerica | %]

B copy
Sum of Sales Amount Column L
Row Labels - |Accessor [E] Format cels.
Canada ¢
Central . [ Refresn
Northeast 5
Northwast 5¢
Southeast 45 Remoye “Region”
Southwiest 11¢





image28.tmp
Add-ins  Help  Power Pivot PivotTable Analyze

(2 (g | BB B A

Refiesh (Change Data| | Clear Select Move | Fields, lter
~ | source~ ~ ~  PivoTable |  &Sets~

[B Change Data Source...





image29.tmp
Change PivotTable Data Source

Choose the data that you want to analyze
(@ select a table or range
Table/Range: | ‘Sample Data'SAST:SN$60920
Use an external data source
Choose Connection.

Connection name:

ok

Ccancel

>





image30.tmp
Compact Form Layout

Outline Form Layout

Tabular Form Layout

[Row Labels -/ Sales [Market Segment[~] Sales [Market -7 Segment [ Sales

= Australia 1622869.422) | = Australia 1622869.422| | =Australia  Accessories 23973 9136|
Accessories  23973.9186| Accessories  23973.9186 Bikes 1351872 837|
Bikes 1351872.837| Bikes 1351872.837| Clothing 432316124
Clothing 432316124 Clothing 43231.6124] Components 203791.0536
Components  203791.0536 Components 203791053 [Australia Total 1622869.422|

=Canada 14463280.15| | = Canada 14463280.15|  [SCanada  Accessories 1193025429
Accessories 119302 5429 Accessories  119302.5429] Bikes 11714700 47|
Bikes 11714700 47| Bikes 11714700 47) Clothing 383021.7229
Clothing  383021.7229) Clothing ~~ 383021.7229) Components 224625 419)
Components 2246255419 Components 2246256.419|  [Canada Total 14463280.15|

=Central 7932851.609)| = Central 7932851.609| =Central Accessories 46551211
Accessories 46551211 Accessories 46551.211) Bikes 6782978 335
Bikes 6762978 335| Bikes 6762978 335 Clothing  166873.9547]
Clothing 155873 9547 Clothing ~~ 155673.9547] Components 9474481091
Components 947448 1091 Components 947448.1091 |Central Total 7932851.609)

=France 4647454.207 | ‘=France 4647454.207) =France Accessories 489415643
Accessories 489415643 Accessories 489416643 Bikes 3697879 394
Bikes 3697879.394] Bikes 3597879.394 Clothing 129508.0543|
Clothing 129508.0548| Clothing 129508.0548| Components 871125.1938
Components  871125.1938| ‘Components  871125.1938 France Total 4647454.207 |

=Germany 2051547729 | =Germany 2051547.729|  [SGermany Accessories 35681 4552|
Accessories 35681 4552 Accessories 366814552 Bikes 1602487.163)
Bikes 1602487 163 | Bikes 1602487.163| Clothing 75592 5945
Clothing 75592 5945 Clothing 75592 5945 Components _337786.516
Components 337786 516) Components_337786.516|  [Germany Total 2051547.729)





image31.tmp
87

Report
Layout ~

Jsubtotals Grand
- Totals~
Layol
A

B[O [T BTWE N[

Regon

Sum of Sales
Row Labels
Canada
Central
Nortneast
Nortriwest
Southeast
Southwest

Blank
Rows ~

| Row Headers

~| Column Headers

‘Show in Compact Form

‘Show in Outline Form

Show in Tabular Form

Repeat All Item Labels.

Do Not Repeat Item Labels.

7





image32.tmp
Sum of Sales Amou~! [ntemr kot T

Row Labels
Canzda
Central
Northeast
Northwest
Southeast
Southiwest
Grand Total

®

B

i}

Copy
Eormat Cells.
Number Format,

Reiresh

Remoye "Sum of Sales Amount”

Summarize Values By
Show Values As

Value Field Settings...





image33.tmp
Value Field Settings ?

Source Name:  Sales Amount

Custom Name: |Total Sales

Summarize Values By  Show Values As
Summarize value field by

Choose the type of calculation that you want to use to summarize
data from the selected field

~
Count

Average

Max

Min

Product v

Number Format oK Ccancel





image34.tmp
Value Field Settings ?

Source Name:  Sales Amount

Custom Name: |Average of Sales Amount

Summarize Values By  Show Values As
Summarize value field by

Choose the type of calculation that you want to use to summarize
data from the selected field

sum

Count

Number Format oK

Ccancel





image35.tmp
A B c 0 E

1 |Region T|subregion ¥|warket ~Business segment | |sum of sales Amount
2 |ENomhAmerica  SUnitedStates | Gceniral Accessories 46,551
3 Bikes 6782978
[ Clothing 155874
5 Components 97,428
0 cenual Total 7932852
7 Northeast Accessories 51,2
8 Bikes 590,285
[} Clothing 163,002
i Components 101,702
1 Northeast Total 595557
12 Northwest Accessories 53,208
13 Bikes 10,488,355
14 Clothing 201,052
15 Components 1,784,207
16 Northwest Total 12,523,063
17 =Southeast Accessories 5,736
i Bikes 677,55
19 Clothing 165,689
e ‘components 955,327
21 Southeast Total 7,908,318
£ =Southwest Accessories 10,080
2 Bikes 15,430,281
24 Clothing 364,099
B ‘components 2693368
B Southwest Total 18,598,027
E United States Total s3.915,54

28 | North america Total S3,915,334





image36.tmp
Pivotiabie Tools

Analyze | Deson

Grand | Report Blank | [ Copumn

T

P
‘Showall Subtotals at Top of Group

Indude Fittered itemsin Totals





image37.tmp
A B [ il E

1 [Region |suokegion | market - [Business segment + | sum of Sales Amount
? |ENothAmerica | CUnitedStates  SCentral Accessories 26551
3 Bikes 628297
4 Clothing 15587
5 Components 4728
5 Snortheast Accessories 5128
7 Bikes 5050285
8 Clothing 163402
3 Components 1051,702
0 SNorthwest Accessories 53,308
n Bikes 10,484,495
12 Clothing 201,052
1 Comgonents 1784207
1 Southeast Accessories 15,730
1" Bikes 6737,5%
1% Clothing 165,689
17 Components 559,337
18 SSouthwest Accessories 110080
18 Bikes 15430281
a Clothing 264,039
Pl Comgonents 2693568

22 [Grand Total 5351893





image38.tmp
Field Settings

Source Name:  Business Seament

Custom Name: Business Segment

Subotls & Fiters | yous e
Subtonas

O suromase

@fiene

O gustom
Select on or more functons

in
Product

Filter

[incude new tems in manual fiter

oK

Cancel





image39.tmp
Market

Australia Total
SCanada

Canada Total
Central

Central Total

B c
~[Business segment [~ |sum of sales Amount
Accessories B
Bikes $1,351,873
Clothing 543,03
‘Components $203,791
51,622,869
[Accessories $119,303
Bikes 511,714,700
Clothing 383,002
Components 52,206,255
$14,263,280
Accessories 546,551
Bikes 96,782,978
Clething $155,874
components 947,448

57,932,851





image40.tmp
[T Region North America ¥
4

b Market  ~lBusiness Segment -
2| sotatoz
%l satztoa
Hore Sort Oprions.
Label iters >
Value Fillrs >
Search pol

(Select All)
Accessories





image41.tmp
A B [

1 [Market - [Business Segment <T|Sum of Sales Amount
2 [SAustralia Accessories 3,97
3 Clothing 43,292
4 components 203,791
5 |Australia Total 570,957
§ | 5Canada Accessories $119,303
7 Clothing 383,022
O Components 2,206,255
3. |Canaca Total 52,708,580
10/ = central Accessories 46,551
kil Clathing $155,874
12 Components $947,048

13 | Central Total $1,149,873





image42.tmp
6 Market - [Business Segment | -
21 sonatoz

%l sanzron

More Sort Options.

Label Flters >
Value Fiters >

Search el

¥ Accessories
 Bikes

¥ Clothing

¥ Components





image43.tmp
A B

1 Region (al) 2
2

3 salesperiod - sum of Sales Amount
4 01/01/08 $713,230
5 02/01/08 $1,900,797
6 03/01/08 1,855,282
7 04/01/08 $883,011
8 os/o1/08 $2,269,722
9 06/01/08 1,137,250
0 07/01/08 52,411,569
L i Jo] - fic gas





image44.tmp




image45.tmp
Field Settings. X

Source Name:  SalesPeriod

Custom Name:  salesperiod

Sustotals & Fiters |~ Layout & Print

Layout

O Show item labels in outine form

Display labsis from the next feld in the same column (compac form)

Display at the top of each group
® show tem labels in tabular form

[ Repeat tem labels
[ nsert blank line after each item label
o e i e 9o

Print

[ insert page break after each tem

Nember Format oK Ccancel





image46.tmp
1 [Region Europe ]

2

3 salesPeriod| - sum of Sales Amount

a 01/01/08

5 02/01/08

3 03/01/08

7 04/01/08

8 05/01/08

9 06/01/08

10 07/01/08 5180241
08/01/08 $448,373

1 na/n1log 72122,





image47.tmp
1802411

i, [ coy
e
. !
7 fomrcons
R —
0
i B peren
P
" s >
177, £
L ——
300
S summrzevoessy ;

51, sort Smelest to Lergest
%L SortLargest o Smallest

More Sert Options..





image48.tmp
A

1 Region North America

2 | Market [20)

Search
@n
Aususalia
Canada
Central
France
Germany
Nortneast
Northwest
Southeast

L] Select Multiple ftems

=

Cancel





image49.tmp
(Multiple ltems) ¥
n A
Ll canada ~
T Central

L France

L Germany

¥ Northeast

¥ Northwest

¥ Southeast

¥ southwest
ClUnited Kingdom

Select Multiple ltems.

o]





image50.tmp
A B ) D
ren  petAmee T et 7
customer G| Gl
SelesPeriod [~ Sumof ales Amount | (INGTNGESTII) (NGRVESUNY

oi/01/08 73020 | [Souheast [ Soutwest |

c2/o1/os ssoars |t

osfor/os Tass e

carousos a1t | [Gamay | Unfedkng

osfousos 2200722

06/01/08 1,137,250

orfonsos e

osfoi/os Sierss

osfonsos Jsatsse

10001708 1eea 99





image51.tmp
SalesPeriod - |Sum of Sales Amount.

Market ¥

01/01/08 174263
oyorsos estasg | | Conaa Contral
03/01/08 01562 | [Herneast || Nermwest
04/01/08 194352

05/01/08 Tatopr || Svmenst  [Solvest
06/01/08 aargee || Ausicia nos
o7/01/08 821502 o

08/01/08 1315301

osfo1/08 174,209

Lo/otine. e





image52.tmp
[Review ~ View Developer Add-ins Help  Power Pivot  PivotTable Analyze  Design

BE=mE b BRD| 0 O

et _insert Refresh Change Data | Clear Seloct Move | Fieds, e,
Sice Timeline v Sowcev | v v Puomlble | &St~





image53.tmp
Insert Slicers

[ Region
[ subregion

[ marter

[ customer

[ usiness sagmen:
[ category

[ Mocel

[ color

[ sslesDate

[ salesperiod

[0 ustorice

[ nieprice

[ orderaty

o

cancel





image54.tmp
Feb
war
Apr
Hay.
un

m

vz

Eatimare
Bufsl
Caiforia

Caneds





image55.tmp
sipbote |- |Revenue [ Region 7 Uarket i3
on e
feo 1202050

ar saiser

e 207024

ay vsaes

o vsasn

J... w0552

e Zsma0

sep prete L || e
pie 2087 | (somn Dakotss

Nou 21527 || Sowmes - || ootes e
oe Py

GuandTol 21155134





image56.tmp
Southwest

Warket

==
Butilo

[ Gatioma
Canada

| Chatte

[hiosn
Dakoes
Dalls





image57.tmp
Region =

(ovesst |~

shipDate ~|Revenue
Jan 767,771
Feb 1181,0%

war 143,527





image58.tmp
Format Slicer

- Position and Layout

4 sz
Hefght 257
widtn z
Scale Leight o
Scale width 0%

Lotk aspect atlo

4 Properties

Move and sze with cells
) Move but dor'tsize with cells
Dont move orsize with cells:





image59.tmp
Format Slicer

4 POSITION AND LAYOUT
Posiion
Horzortal
Vel

Dissle resiing end mexing
Layout

Hombes of columns
Euton neigh

Button width

s





image60.tmp
Siicer Settings
Source Name:  Region

Name to use in formulas:_Slkcer_Region
Neme: [Region

Header
Displey header
caption: [Region

tem Sorting and Fitering.

® ascending (a102)
O oescening 2to A)
Use Custom Lists when sorting

[ side items with no dats





image61.tmp
Report Connections (Market) 7 x

Select PivotTable and PivotChart reports to comnect o this flier

[ ame Tsheer =
< B Fuotabies Sheez
v [ ruoravies sneerz
o [ Protlabies Sheetz
PivotTabied sheet3 E





image62.tmp
Insert Timelines 7 x

¥ order Date
(] salesperiod





image63.tmp
Order Date T

Mar- May 2020 MONTHS ~

20
AN BB MAR AR MAY  JUN UL AUG S OCT

Cost by Month

9,000k
8000k
7000k
6000k

5000k

4000k

3000k

2000k

1000k

ok
Mar apr Way

200





image64.tmp
Order Date %
Mar-0ct 2020 onms -
220

o mR M e L A s oo Nov

—————————
1 —

9000k
8000k
7000k
6000k

Cost by Month

200

1
g





image65.tmp
Order Date. A

02-042020 aunaress -
2020 2 VEARS
C omm— EEEER
[T
[ MONTHS
DAY

Cost by Month
200k
8000k
7000k
00k

-

o

.

e

=111
B

020





image66.tmp
Teble Import Wizard 7

Connoct o Drin Sourco
‘Vou can sitar crsate  connscton t o cata seurc, or Yo can s o tht alacly

[r—r——

. dotabase. Importtablesorviewsfor he daiabase, or dota etumes

Microso 5L Az

Create & conniacion o & SGL Azur databse. Import tables o iews rom the doabase, o data reurned
o query

Microsott Analyts Pltiom Systom
Cronts n connoction 1 5 Microsoft Anayts latrm Systom. Import tobics or v n tha dtabess,or
Gt retuned o Qseny.

Microsaft Access

Croets & conniction o 3 Microsoh Access database. mport abls ofvaws fom the datsbase, o doe
Famined from 2 ey

Oracke

Croets o connscron o an Oracs dotabess. Importables or views fom the dotabess,or data retumed fom
ey

Teradotn

Create a connacron . Teradsta datsbase.Import ablesorviews fomthe database,or data retumad
o query

Sybase

et 5 conniction 0. Sybse delsbase: Impartables orviews o the detabsse, o dta etumed from
aauery.

<o Fl] [ omen





image67.tmp
Table Import Wizard

Gonnact1o a Microsoh SOL Server Daiabase.

Ener the information requred t connectto the Mirosaft SOL Servercotabose.

ey conecionname iy Serer Gonnecion

Servername: Peromance datbese wadoms et

Log on o the server

) Use Windows Authentication

(@ Use 5L Server Auenteation

User name: o

—

[ Save my passuord

Cesbuserame:  [shopsUAT

<Back.

Advancad

Nea > Finen

Test Gonnacion





image68.tmp
Table Import Wizard

Chooso How o Impart tho Deta

‘You can efther import ol ofthe deta rom tables or views ot You speciy, or you con write o
‘qusry uting SQL that spcifios 1ha deta 1 import.

@ Select from a st of tables and views to choose the dta 10 import

O Write & query that wilspeciy the dats o mport

<Bock Next> Emsr Gancel





image69.tmp
flable Import Wizard

Select Tabies and Views
‘Select the tables and views that you want o import dats from.

Sorvor:  compotivaporformance databasowindows.not
Database: bbopsUAT

Tobles and Views:

e

e ——
LI reportingmonths refined
OFE | systemusers refined
5 | wanticipatedmpact_iden_8r_| refined
05 | wanticipatedmpactmounts | refined

Soloct Relstod Tablas | Preview 8 Fiter

<Back Next> Finish Gancel





image70.tmp
ible Import Wizard

Preview Selactd Table
Use the checkbox o selectspecile colmns. To e he data i & column, use he drop-doansitow T the column 1 selctvak

83| £ TheDay B3 B TheDayName 3 M Theweek K3 M Th.. B3
1 1/1/2017 12:00:00 AM 1 Sunday 1 1

2 1/2/201712:0000 AM 2 Monday 1 2
3 1/3201712:0000 AM 3 Tuesday 1 3
4 1/4/2017 12:00:00 AM 4 Wednesday 1 4
5 1/5/2017 12:00:00 AM 5 Thursday 1 5
6 1/6/2017 12:00:00 AM 6 Friday 1 6
7 1/7/201712:00:00 AM 7 saturday 1 7
& 1/8/2017 12:00:00 AM 8 Sunday 2 1
9 1/9/2017 12:00:00 AM 9 Monday 2 2
10 1/10/2017 12:00:00 AM 10 Tuesday 2 3
11 1/11/2017 12:00:00 AM 11 Wednesday 2 4
12 1/12/201712:00:00 AM 12 Thursday 2 s
13 1/13/2017 12:00:00 AM 13 Friday 2 6
14 1/14/2017 12:00:00 AM 14 Sawrday 2 7
15 1/15/2017 12:00:00 AM 15 Sunday 3 1

Geor Row Fiters





image71.tmp
Praview Selected Toble

Use e chickbo 10 select speciic colimns. To itar the dstain & column, use he drop-down

Table Neme. MasterDates

Sort Oldest to Newest
Sort Newest to Qldest
Clear Sort From "TheDate"

Clear Filter From "TheDate"
Date Fitters .

v (select Al
 1/1/2017 12:00:00 AM
i 1/2/2017 12:00:00 AM
@ 1/3/2017 12:00:00 AM
@ 1/4/2017 12:00:00AM

@ Notalltems showing.

ok [ cancel

15 1/15/2017 12:00:00 AM

Clar Row Fiers,

Clm N g e

10
1
12
13
14
15

TheDay
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
saturday
Sunday





image72.tmp
Table Import Wizard

Importing
“Ths impor oporaton might tako sevrs! minulos t comploto. To stop tho mportof
the Stop Import utton

Status. Messoge|
[P ——
FRS Y S—)
Suscrss, 2191 v et
RS- S——
Suserss, 6rovs ardfered
Sucosss 11 o e,
PSR ——

Conplued Dt





image1.tmp
A e c ) F
+ [ Customerip G involceNomber_involceDate | uentity Unitprice]
2 BAKERSEMOO01 _ Bakers Emporium nc ‘ORDST1025 5/8/2005 1 1995
3 BAKERSEMO0O1  Baker's Emporium Inc. (ORDST1025 5/8/2005 5| 1759.95
4 BAKERSEMO0001  Baker's Emporium Inc. 'ORDST1025 5/8/2005 4 9.95
5 BAKERSEMO00D1  Baker's Emporium Inc. STDINV2251 4/12/2007 4 9.95
6 AARONFITOOOL | Aaron Fitz Electrical 'ORDST1025 5/8/2005 5 9.95
7 ARRONFITC001  Aaron Fite Secrcl oRosTIo2s s 3 amess
8 AARONFITO001  Aaron Fitz Electricel 'ORDST1026 5/8/2005 2 79.95
9 AARONFITOO0L | Aaron Fitz Electrical STDINV2252 4/12/2007 3 175995
10 AARONFITOOOL  Aaron Fitz Electrical STDINV2252 4/12/2007 5| 995
11 METROPOLO001  Metropolitan Fiber Systems 'ORD1002 5/7/2008 1 9.95
12 AARONFITO00L  Aaron Fitz Electricel INV1024. 2/10/2004 1 11995
13 AARONFITO001  Aaron Fitz Electrical INV1025 2/15/2008 1 10995
14 R0 LaClere & Associses oRopHIOS oz 2 awmss
15 MAGNIFICO001  Magnificent Office Images 'ORD1000 5/8/2004 1 359.95
16 HOLLINGC0001  Holling Communications Inc.  ORD1001 5/10/2004 2 59.95





image73.tmp
Teble Import Wizard ?

Connoct o Drin Sourco

Vou can sitar crsate  connsctn t o cata sourc, r yeu can uss ans et already

Microso SQL Server
Creete o conniction .8 SOL Server daabase. Import tables or views from the dotabase, ordata reumed
fioma query

™ Microsoh SQL Ao

' Create  connectio to o SOL Azure detabase. Importables  views ramthe dt
o query

= Microsolt Analytcs Pltiorm Systom

5 Crosto » comnocton o Microsot Avalyics Platform Systom Iport s or v n tha dabess,or
Gt retuned o Qseny.

8 Mikrosof Access detabass,Impor taies o views rom the dalsbese, o

% Creste  connecton to an Oracie databass. Import tables or views from the detebess. o data retumed from.

ey

) Teradom

% Crosta s connacon t s Teradeta database. Import ablesor vews fomthe datsbase,or data retumad
o query

[ Sybese

< Cronte s connecton 0 8 Sybase detabsse:Import abies o vews rom the dalsbase, ordata retumedfom
ey,

<o Fl] [ omen





image74.tmp
[feble Import Wizard

‘Conneet 10 o Mierooof Acocas Database:
Entr the informaton raquired fo connect 0 he Mierosoft Access detabase.

Friendy connecion name: [rcces Fociy Servces

Database name [EsersraADocameriBymame Arey o anerGoery Craptr
Log onto the detabase
User name: [
Pessword: [
[Jseve my possword
e

<Back Newt> =

Test Connaction





image75.tmp
Tl Import Wizard 2

Connoct o Drin Sourco
Vou can sitar crsate  connsctn t o cata sourc, r yeu can uss ans et already
. orade B
& Grosts & connecton to an Oracis database. Importtables or viws fom the detabess, o data returned from
Sy
% Teradow
% Creats  connecton 1 Teradata database. Import tables o views from the database, or data retumed
rom e query
M Sybase
% Craste  connacton t 8 Sybase dstabesa.Importabis orviows from the datsbase.ordata retumed from
Saery.
7 nformix
“ Craste s connacion o on Informx desbase. Impetables or views o the detabase, o data reued
o query.
~ imosz
4 Grante n connaction o DBZ database. Import tables or views from the dotabase, or daia rsturmed from a
awer.

‘Others (OLEDBODEC)

Crans  connection o »data source by using on OLE DE provideror an OLE D for ODEC pr
o from h tables o iows thatore etumed B he provier

% Microsoft Anslyss Sorvos.
% Craste n connection & S Server Ansiysis Senvces cube.Import e returmed from on MDX query.

<o Fl] [ omen





image76.tmp
Table Import Wizard

‘Specity a Connecton String

“Type of paste 5 conneciion sirng. A connacton siring contains
connactto o particular deta source

Friendly name for this connection: [Vy Gusiom Gonnection

Connsction Sting

<Back

Nex >

Bud

Test Connaction

Cancel





image77.tmp
2. Data Link Properties x

Provider Gomecion Advanced Al

Selectthe gaia youwartio comectto

OLE DB Provides)

Mictosaf Offce 120 Accass Database Engin OLE DB Providar
Microsof Offce 160 Access Databss Encins OLE DB Providsr
Microsoh OLE DB Drverfor SGL Sarver

Microsof OLE DB Providerfor Analysa Senvices 130
Mictosofl OLE DB Providerfor Analysis Senvices 140

Microsof OLE DB Providerfor 0DEC Drvars

MicrosofiLE DB ProwcerfoScorcn
Vicrosof OLE DB P
MictosoflOLE DB Simple Provider
MDsiShane.

‘OLE DB Providerfor ierosof Diectory Services
SQL Server Natvo Cient 110

New>>





image78.tmp
Table Import Wizard

Specify a Connection String
Type or paste a connection string. A connection string contains the information needed to
connect to a particular data source.

X(

Friendly name for this connection: [My Custom Connection

EREa Provider=SQLOLEDB. 1:Persist Security Info=False;User ID=Cpadmin;Initial

(Catalog=bbopsUAT;Data Source=performance database windows. net

Build... Test Connection

<Back Next > Finish Cancel





image79.tmp
Teble Import Wizard ?

Connoct o Drin Sourco

‘Vou can sitar crsate  connscton t o cata seurc, or Yo can s o tht alacly

Others (OLEDBODEC) g

Greots o connacion . data sourcs by using an OLE DB proveler o an OLE DB for ODBC providr. Import
e o 78 ol 1 s hak o ot 3y i prove

% Microsoft Anslyss Sorvos.
 Craate a connectonto a S Server Anaiysis Sericss cube. Impor:data raturned from e MEX query

Repon
Groats a connction .8 Microsot Raporting Sorvces Report. Impertdeta fom o

o Onerren

st & connicion o »data fasd. Impart data from s fc.

ExcelFie

TextFie
Import ot rom et e

<o Fl] [ omen





image80.tmp
|[Table Import Wizard ? X

‘Connect to a Microsoft Excel File
Enter the information required to connect to the Microsoft Excel file.

Friendly connection name: [Excel ExcelWorkbook

Excel File Path: [cUsers\hyzwiDocuments\Dynamic Array\PowerQuery\Chapter 9' Browse...

Use first row as column headers.

Test Connection

< Back Next > Finish Cancel





image81.tmp
Table Import Wizard ? X

Select Tables and Views
Select the tables and views that you want to import data from

File Name: C:\Users\hyzmOneDrive - Chevron\Documents\Dynamic Array formulas\PowerQuery\Chapter 9\Chapter 9 Samp
Tables and Views:

(] Source Table Friendly Name Filter Details
[ | Dashboards
I | Dashboard$_xinm#Print_Area

]
M= | MyNomedRa =
]

3 | 'National Parks$'

Select Related Tables = Preview & Filter

<Back Next > Finish Cancel





image82.tmp
Teble Import Wizard 2 %

Connoct o Drin Sourco

Vou can sitar crsate  connsctn t o cata sourc, r yeu can uss ans et already

. Others (OLEDBIODBO) g

L Grosto o connecton 0. dats cource by using an OLE DB proviior o an OLE DB for ODBG rovider.Impert
g e

% Microsoft Anslyss Sorvos.
 Craste  connection & SGL. Server Anaysis Sences cubs. Import dta ratumed from on MEX query.

-, Repon
Groats a connsction .8 Microsot Raporting Servces Rspor Import da rom e

o Onerren

s & connicion o »cata faed. Impart ceta from the feac.

G oern
B ot

TextFae

T

<o Fl] [ omen





image2.tmp
Customers InvoiceHeader
¥ CustomerD InvoiceDate
Customertiame InvoiceNumber

CustomenID

InvoiceDetails

InvoiceNumber
Quantity
Unitprice.





image83.tmp
[Table Import Wizard 7 X|

Connect o Flat File
Enter the information required o get data from flt fies.

Friendly connection name: [Text Chapter12_Sample

Fic Path C\UsersyeviDosumentoDymamic Aray formulasPowerGuery Ghpier T, | Browse

Column Separstor Tab (1) v| | Advanced

Use first row o column headsrs

[E v invoiceNumber (-] oS B unitprice B
1 ORDST1022 1 59.29 119.95
2 ORDST1015 1 3290.55 6589.95
3 ORDST1016 10 35 34.95
4 ORDST1017 50 91.59 189.95
5 ORDST1018 1 59.29 119.95
6 INV1010 1 6745 1349.95
7 INV1011 1 91.25 189.95
8 INV1012 1 303.85 609.95
9 ORDST1020 1 59.29 119.95 v

Clear Row Fillers.

<Back Next> Finish Cancel





image84.tmp
Holiday M Year Month ~ Day
Martin Luther King Jr. Day 2022 Jan 17
Confederate Memorial Day 2022 Jan 19
Washington's Birthday 2022 Feb 21
Texas Independence Day 2022 Mar 2
Cesar Chavez Day 2022 Mar 31
Good Friday 2022 Apr 15
San Jacinto Day 2022 Apr 21
Memorial Day 2022 May 30
Juneteenth 2022 Jun 19
Independence Day 2022 Jul 4
Labor Day 2022 Sep 5
Veterans Day 2022 Nov 11
Thanksgiving 2022 Nov 24
Christmas Eve 2022 Dec 24
Christmas Day 2022 Dec 25





image85.tmp
Paste Preview

Preview the data that you are about to paste. You can modify the table name and
specify whether to use the first row as a header row in the destination table.

Table Name:

[Holiday_Schedule

Data to be pasted:

Holiday Year Month Day
Martin Luther King Jr. Day | 2022 Jan 17
Confederate Memorial Day 2022 Jan 19
Washington's Birthday 2022 Feb 21
Texas Independence Day 2022 Mar 2
Cocar Chavins D EYSH M as

se first row as column headers.

oK Cancel





image86.tmp
Home

.-“-_En] & paste Append

Paste Replace
Paste
Copy
Clipboard

Design

Advanced

(& & [3

From  From Data From Other
Database = Service ©  Sources

Get External Data

F

Refresh

Existing
Connections
[2 Refresh

[InvoiceNu... v

fx

[ Refresh al





image87.tmp
Queries & Connections  ~ %

Queries | Connections

2 connections

ThiswWorkbookDataModel

Data Model
Refresh
X Delete

[y Properties..





image88.tmp
Connection Properties ?

Connection neme: | My_Bxternal Connection

Description:

Usage  pefiniion  Usedin

Refresh control

LstRefeshed:
able background refresh
Deheshevery @ 2] minses

Réicoh 43 When pening e i
Remove cata from the external dats fange befe sauing he workoook
Reresh this cornaction on Refresh A1

OLAP Server Farmatting

Retrieve the following formats from the server when using ihis connection;
Number Format __ Fill Color

Font style Text Color
oLAP Drill Through

Masimum number of records to retrieve:
Language

Retrieve data and errors in the Office display language when available





image89.tmp
Connection Properties ?

Connection neme: | My_Bxternal Connection

Description:

Usage  pefiniion  Usedin

Refresh control
LstRefeshed:
Enable background refresn
Deheshevery @ 2] minses

] Refresh dats when gpering the le
Remove catafrom te external data fange befcre saving the workbock
Rsfiesh s cornedion on Refresh A1

OLAP Server Farmatting

Retrieve the following formats from the server when using ihis connection;
Number Format __ Fill Color

Font style Text Color
oLAP Drill Through

Masimum number of records to retrieve:
Language

Retrieve data and errors in the Office display language when available

o Cancel





image90.tmp
xisting Connections

Selact an Existing Connaction
Sslact a connction to & data source that contains the data that you want 1 import.

Select o dote source connection

SqiServer competitveperformance database windows net bbopsUAT
Data Source = parformance. catabase.windows.net; Inial Catalog = bbopsUAT

[# Exool Excoliorkbook
Data Source = C\UserslhyzwiDocuments\Dynamic Array formulas\PowerQuen\Ct

localhost_49221 Occ196d4-7e51-46a8-5573-30811b112d17 Model
CaUsorsihyzwiDocumentsily Data Sourcosliocslhost_49221 Oce196d1-7651-1¢

Workbook: Book!

w7
(7 Aosesa Facity Servces

[ ot Excomworkbook
Workbook: Book!

Browse for More. Open Edt Refrosh Deloto





image91.tmp
A

B

1 |Sales_Rep| - |Invoice_Date |~ |Sales_Amount - |Contracted Hours | -
2 4416, 1/5/2021 111.79 2
3 4416, 1/5/2021 111.79 2
4 160006 1/5/2021 11213 2
5 6444 1/5/2021 11213 2
6 160006 1/5/2021 145.02 3
7 52661 1/5/2021 196.58 4
8 6444 1/5/2021 204.20 4
9 51552 1/5/2021 22524 3
10 55662 1/6/2021 86.31 2
11 1336 1/6/2021 86.31 2
12 60224 1/6/2021 86.31 2
1 4564 1/6/2021 8631 2





image92.tmp
A B C D

Employee_Number - Last_Name irst_Name - Job_Title -
21 slocat ROBERT SERVICE REPRESENTATIVE 3
42 BREWN DONNA SERVICE REPRESENTATIVE 3
45 VAN HUILE KENNETH SERVICE REPRESENTATIVE 2
104 WIBB MAURICE SERVICE REPRESENTATIVE 2
106 CESTENGIAY Luc SERVICE REPRESENTATIVE 2
113 TRIDIL ROCH SERVICE REPRESENTATIVE 2
142 CETE Guy SERVICE REPRESENTATIVE 3
145 ERSINEILT MIKE SERVICE REPRESENTATIVE 2
162 GEBLE MICHAEL SERVICE REPRESENTATIVE 2
165 CERDANAL ALAIN SERVICE REPRESENTATIVE 3

201 GEIDRIOU DOMINIC TEAMLEAD 1

D12 | RACRARL

nEnIC

CCRVIAE DEDRECENTATIVE 2





